
s

Programming reference guide

CIFX API

Hilscher Gesellschaft für Systemautomation mbH
www.hilscher.com

DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public

Introduction 2/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Table of contents

1 Introduction ... 4
1.1 About this document .. 4
1.2 List of revisions... 4
1.3 Terms, abbreviations and definitions ... 5
1.4 References to documents .. 5

2 Application note ... 6
2.1 Component overview for host applications .. 6
2.2 Component overview for netX applications .. 7
2.3 Availability of API functions .. 8

3 API basics ... 11
3.1 DPM layout, devices and channels .. 12
3.2 Basic fieldbus data handling .. 13
3.3 Fieldbus-specific information and functions ... 13

4 CIFX API (Application Programming Interface) ... 14
4.1 API header files .. 14
4.2 Driver functions .. 14
4.3 System Device functions .. 15
4.4 Communication Channel functions .. 16
4.5 Structure definitions ... 18

4.5.1 Driver information .. 18
4.5.2 Board information .. 18
4.5.3 System channel information .. 19
4.5.4 Communication channel information ... 21

4.6 Driver related functions .. 22
4.6.1 xDriverOpen .. 22
4.6.2 xDriverClose .. 23
4.6.3 xDriverGetInformation ... 24
4.6.4 xDriverGetErrorDescription ... 25
4.6.5 xDriverEnumBoards .. 26
4.6.6 xDriverEnumChannels ... 27
4.6.7 xDriverRestartDevice... 28
4.6.8 xDriverMemoryPointer ... 29

4.7 System device specific functions ... 31
4.7.1 xSysdeviceOpen ... 31
4.7.2 xSysdeviceClose ... 32
4.7.3 xSysdeviceInfo .. 33
4.7.4 xSysdeviceReset ... 34
4.7.5 xSysdeviceResetEx ... 35
4.7.6 xSysdeviceBootstart .. 37
4.7.7 xSysdeviceGetMBXState .. 38
4.7.8 xSysdevicePutPacket .. 39
4.7.9 xSysdeviceGetPacket.. 40
4.7.10 xSysdeviceDownload .. 41
4.7.11 xSysdeviceFindFirstFile ... 43
4.7.12 xSysdeviceFindNextFile .. 44
4.7.13 xSysdeviceUpload ... 45
4.7.14 xSysdeviceExtendedMemory .. 46

4.8 Channel-specific functions ... 50
4.8.1 xChannelOpen .. 50
4.8.2 xChannelClose .. 51
4.8.3 xChannelDownload ... 52
4.8.4 xChannelFindFirstFile .. 53
4.8.5 xChannelFindNextFile ... 54
4.8.6 xChannelUpload .. 55
4.8.7 xChannelGetMBXState ... 56
4.8.8 xChannelPutPacket ... 57
4.8.9 xChannelGetPacket... 58
4.8.10 xChannelGetSendPacket .. 59
4.8.11 xChannelReset .. 60
4.8.12 xChannelInfo ... 61

Introduction 3/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.13 xChannelIOInfo ... 62
4.8.14 xChannelWatchdog ... 63
4.8.15 xChannelConfigLock ... 64
4.8.16 xChannelHostState.. 65
4.8.17 xChannelBusState ... 66
4.8.18 xChannelControlBlock ... 67
4.8.19 xChannelCommonStatusBlock .. 68
4.8.20 xChannelExtendedStatusBlock ... 69
4.8.21 xChannelUserBlock ... 70
4.8.22 xChannelIORead ... 71
4.8.23 xChannelIOWrite ... 72
4.8.24 xChannelIOReadSendData ... 73
4.8.25 PLC I/O image functions .. 74
4.8.26 DMA functions ... 83
4.8.27 Notification functions ... 84
4.8.28 Fieldbus synchronization handling .. 93

5 Simple C-application example .. 96
5.1 The Main() function .. 96
5.2 System device example ... 97
5.3 Communication channel example .. 99
5.4 Board and channel enumeration .. 103

6 General protocol stack handling .. 104
6.1 Overview .. 104
6.2 Protocol stack configuration ... 107
6.3 Cyclic data exchange ... 109

7 Error codes ... 110
8 Appendix ... 115

8.1 List of tables ... 115
8.2 List of figures .. 115
8.3 Legal notes ... 116
8.4 Contacts ... 120

Introduction 4/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

1 Introduction
1.1 About this document
This manual describes the CIFX/COMX/netX Application Programming Interface (CIFX API) and
the containing functions, offered for all Hilscher standard devices based on netX controller
hardware.

Aim of the API is to provide applications a target and fieldbus independent programming interface
to netX based hardware running a standard Hilscher fieldbus protocol or firmware which meet the
Hilscher netX dual port memory (netX DPM) definitions, described in the 'netX Dual Port Memory
Interface' manual (see reference [1]).

The API is designed to give the user easy access to all of the communication board functionalities.

In addition, Hilscher also offers a free of charge cifX Toolkit (C-source code based) which allows to
write own drivers based on the Hilscher netX DPM definitions including the CIFX API functions (the
toolkit is described in a separate cifX/netX Toolkit manual, see reference [2]).

1.2 List of revisions
Rev Date Name Chapter Revision
1 2012-12-11 RMA all Extracted from the CIFX Device Driver - Windows DRV 21 EN.pdf
2 2013-02-18 RMA 4.8.28

7
Section Fieldbus synchronization handling added.
Tables in chapter Error codes revised.

3 2014-10-08 RMA
SSP
RMA

4.8.17
4.8.27

Note for xSysdeviceDownload and xChannelDownload inserted.
Description of xChannelBusState extended.
Description for Notification functions added.

4 2015-07-25 RMA
4.5.3
4.8.22 /
4.8.23
4.8.25

Some writings fixed.
SYSTEM_CHANNEL_SYSTEM_STATUS_BLOCK structure updated.
note of the default xChannelIORead()/xChannelIOWrite handling added

Description of the PLC I/O image functions updated.

5 2018-08-28 RMA 2.3
4.7.10
4.8.22
4.8.23

Section Availability of API functions: List of API functions updated.
Section xSysdeviceDownload: Table of available download modes added.
Section xChannelIORead: Note added.
Section xChannelIOWrite: Note added.

6 2019-04-16 ALM /
LCO

2.3
4.3
4.5.3
4.7.5

Section Availability of API functions: xSysdeviceResetEx added.
Section System Device functions: xSysdeviceResetEx added.
System Control Block updated.
Section xSysdeviceResetEx added.

7 2019-08-13 4.7.5 Section xSysdeviceResetEx: Description of update start expanded.
Table 1: List of revisions

Introduction 5/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

1.3 Terms, abbreviations and definitions
Term Description
netX Hilscher highly integrated network controller
rcX Hilscher Real Time Communication System for netX

cifX Communication Interface based on netX

comX Communication Module based on netX

API Application Programming Interface

DPM Dual-Port Memory
Physical memory area, connected to a host processor.
Standard interface to Hilscher communication boards like CIFX/COMX or netX evaluation boards
(Attention: DPM may also be used as a shortcut for PROFIBUS-DP Master field bus protocol).

SHM Shared Memory
System memory area shared between different processes inside a software application

SPI Serial Peripheral Interface
RPC Remote Procedure Calls

DPM Manual Description of the standard Hilscher DPM layout and functionality
netX Transport Diagnostics and remote access functions to netX based remote devices via serial interfaces
CIFX Toolkit C source-code based implementation of the standard Hilscher DPM access functions
SDO Service Data Object

PDO Process Data Object

Table 2: Terms, abbreviations and definitions

1.4 References to documents
This document refers to the following documents:

[1] Hilscher Gesellschaft für Systemautomation mbH: DPM Manual,
netX Dual-Port Memory Interface DPM Manual, Revision 16, English, 2019.
Description of the standard Hilscher DPM layout and functionality

[2] Hilscher Gesellschaft für Systemautomation mbH: Toolkit Manual,
cifX/netX Toolkit - DPM, Revision 11, English, 2019.
C source-code based implementation of the standard Hilscher DPM access functions

[3] Hilscher Gesellschaft für Systemautomation mbH: Program Reference Guide,
netX Diagnostic and Remote Access, Fundamentals Revision 3, English, 2019.

Hilscher Gesellschaft für Systemautomation mbH: Program Reference Guide,
netX Diagnostic and Remote Access, Host Device Revision 3, English, 2013.

Hilscher Gesellschaft für Systemautomation mbH: Program Reference Guide,
netX Diagnostic and Remote Access, Target Device Revision 3, English, 2010.

Table 3: References to documents

Application note 6/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

2 Application note
2.1 Component overview for host applications
Hilscher offers the CIFX API on different platforms and as different applications (DLL / library or C
source code). Usually the API comes with an operating system driver or with the CIFX Toolkit.

The use of the API also implies the physical hardware connection to the netX hardware. While a
device driver uses memory functions to access the DPM, the toolkit also allows the implementation
of alternative hardware access functions like DPM via SPI or custom access functions like DPM via
a custom USB protocol.

The netX Transport DLL is a special implementation of the CIFX API, including hardware access
via serial interfaces (e. g. USB, serial or Ethernet connections). This component is able to convert
CIFX API function calls either into appropriate packet based commands (rcX packets, described in
reference [1]) or into a dedicated binary format which enables the execution of the API functions on
a remote system (similar to RPC - remote procedure calls).

CIFX API Components

 Hardware Interface

CIFX - API

netX Transport
(e.g. Windows / Linux)

USB / serial / Ethernet
access

Physical DPM
via SPI

Remote
CIFX API

(RPC)

rcX
Packet

CIFX Toolkit

CIFX Driver
(e.g. Windows / Linux)

CIFX / netX
Driver Interface

CIFX / netX
Device Driver

Physical
DPM

CIFX Toolkit

Customer

CIFX / netX
Driver Interface

(optional)

Figure 1: CIFX API components

Note: Not all of the physical connections can be made available on every host system
(e.g. SPI on Windows).

Application note 7/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 Physical DPM interface
The DPM hardware interface, with direct access to the memory, offers the entire defined API
functions.

 Physical DPM via SPI
The netX hardware offers a SPI interface accepting encoded memory access functions
(memory read / write functions) to the DPM. These SPI commands are decoded by the
hardware / firmware and executed on the internal DPM of the netX device.

 USB / serial / Ethernet access
Another possibility to access a netX device is the use of serial interfaces
(USB/serial/Ethernet). In this case, CIFX API function calls are converted (described in the
netX Diagnostic and Remote Access manual, see reference [3]), transferred and processed
by the remote netX device.
This type of communication does not offer all of the CIFX API functions. Especially functions
related to mapped memory areas like xChannelPLC...() functions.

2.2 Component overview for netX applications
Hilscher also provides the application development directly on the netX communication controller.
The CIFX API is also available in this environment.

netX Communication Controller

CIFX - API

User Application

Fieldbus Protocol Stack

Figure 2: Component Overview for netX applications

Application note 8/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

2.3 Availability of API functions
Following table lists the available API functions regarding to the used environment and the physical
hardware connection.

Driver functions

Function Brief description DPM DPM
via
SPI

USB / serial /
Ethernet

netX

RPC | Packet

xDriverOpen Opens the driver X X X | X X

xDriverClose Closes the driver X X X | X X

xDriverGetInformation Retrieves driver information X X X | X X

xDriverGetErrorDescription Retrieves an error code description X X X | X X

xDriverEnumBoards Enumerates available boards/devices X X X | X X

xDriverEnumChannels Enumerates available channels on a specific
board

X X X | X X

xDriverRestartDevice Restarts a device X X O | O O

xDriverMemoryPointer Gets/Releases a pointer to the dual port
memory. Only to be used for debugging
purpose.

X O O | O X

Table 4: List of API functions – Driver functions

System Device functions

Function Brief description DPM DPM
via
SPI

USB / serial /
Ethernet

netX

RPC | Packet

xSysdeviceOpen Opens a connection a system device X X X | X X

xSysdeviceClose Closes a connection to a system device X X X | X X

xSysdeviceInfo Gets System device information X X X | X X

xSysdeviceReset Performs a device reset X X X | X X

xSysdeviceResetEx Performs a device reset with parameters X X X | X X

xSysdeviceBootstart Performs a device boot start X X O | O O

xSysdeviceGetMBXState Retrieves the system mailbox state X X X | X X

xSysdeviceGetPacket Reads a pending packet X X X | X X

xSysdevicePutPacket Sends a packet X X X | X X

xSysdeviceDownload Downloads a file/configuration/firmware X X X | X X

xSysdeviceFindFirstFile Finds the first file in the given directory X X X | X X

xSysdeviceFindNextFile Finds the next file entry in the given directory X X X | X X

xSysdeviceUpload Uploads a file/configuration/firmware X X X | X X

xSysdeviceExtendedMemory Gets a pointer to the extended memory area X (1) O O | O O

Table 5: List of API functions – System Device functions

Application note 9/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Communication Channel functions

Function Brief description DPM DPM
via
SPI

USB / serial /
Ethernet

netX

RPC | Packet

xChannelOpen Opens a communication channel X X X | X X

xChannelClose Closes a communication channel X X X | X X

Asynchronous services (Packets) X

xChannelGetMBXState Retrieves the channels mailbox state X X X | X X

xChannelGetPacket Reads packet from the channel mailbox X X X | X X

xChannelPutPacket Sends a packet to the channel mailbox X X X | X X

xChannelGetSendPacket Reads back the packet sent X X X | O X

Device Administrational/Informational functions X

xChannelDownload Downloads a file/configuration to the
channel

X X X | X X

xChannelReset Resets the channel X X X | X X (3)

xChannelInfo Retrieves channel specific information X X X | O X

xChannelWatchdog Activates/Deactivates/Trigger Watchdog X X X | O X

xChannelHostState Sets the Application state flag
(signal application is running or not)

X X X | O X

xChannelBusState Sets the bus state flag
(start or stop fieldbus communication)

X X X | X X

xChannelControlBlock Access the Channels control block X X X | X X

xChannelCommonStatusBlock Access to the common status block X X X | X X

xChannelExtendedStatusBlock Access to the extended status block X X X | X X

xChannelUserBlock Access user block (not implemented yet!) X X X | X X

Cyclic Data services (I/O's)

xChannelIORead Instructs the device to place the latest data
into the DPM and passes them to the user

X X X | O X

xChannelIOWrite Copies the data to the DPM and waits for
the firmware to retrieve them

X X X | O X

xChannelIOReadSendData Reads back the last send data X X X | O X

Cyclic Data services (I/O's, PLC optimized)

xChannelPLCMemoryPtr Gets a pointer to the IO Block X O (2) O | O X

xChannelPLCActivateRead Instruct the firmware to place the latest
input data into the dual port (no wait for
completion)

X O (2) O | O X

xChannelPLCActivateWrite Instruct the firmware to retrieve the latest
output data from the dual port (no wait for
completion)

X O (2) O | O X

xChannelPLCIsReadReady Checks if the last Read Activation has
finished

X O (2) O | O X

xChannelPLCIsWriteReady Checks if the last Write Activation has
finished

X O (2) O | O X

Application note 10/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Function Brief description DPM DPM
via
SPI

USB / serial /
Ethernet

netX

RPC | Packet

DMA services

xChannelDMAState Activates/Deactivates DMA mode X (1) O O | O O

Bus synchronous operation

xChannelSyncState Waits for a synchronization event or
trigger/acknowledge a sync event

X X (4) O | O O

Notification services (only available in Interrupt mode)

xChannelRegisterNotification Registers a notification callback X X (4) O | O O

xChannelUnregisterNotification Un-register a notification callback X X (4) O | O O

Table 6: List of API functions – Communication Channel functions

Notes:

(1) PCI / PCIe hardware only.

(2) Special implementation for SPI necessary.

(3) A system reset will reset the whole device.

(4) Notifications are only available in interrupt mode.

API basics 11/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

3 API basics
As described before, the CIFX API is the common, fieldbus protocol independent, function
interface to Hilscher CIFX/COMX and netX based devices.

It is based on the Hilscher netX DPM (dual-port memory) definition and abstracts the access to the
netX based hardware and the Hilscher netX protocol firmware running on the netX.

The API offers a set of functions grouped into 'Driver' related, 'System Device' related and
'Communication Channel' related functions.

Each of the group covers device specific functions by providing a set of API functions necessary
for the specific handling.

Functional Groups in the CIFX-API:

 Driver related functions
Administration of multiple devices in a standardized way

 System Device related functions
General device functions (e.g. system reset, download, device information)

 Communication Channel related functions
Fieldbus protocol stack handling

API basics 12/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

3.1 DPM layout, devices and channels

The DPM layout divides the interface to a netX device into several areas (channels) where each
channel has its own structure, predefined information and functionality and can be handled
independently from other channels.

A standard netX firmware offers up to 8 channels with three different channel definitions.

General DPM Layout:

Channel Definition:

 System Channel (also named System Device)
The main channel is the 'System Channel' also named 'System Device'. It is always available
and used for administration functions belonging to the whole device, like hardware reset,
firmware download etc.

 Communication Channels
Communication channels representing a fieldbus connection (a fieldbus protocol stack) with
its information and functionalities.
Up to four communication channels are possible.

 User Channels
User channels are the third type of channels and designed for user applications, running on
the netX chip in parallel to fieldbus protocol stack (two user channels are possible).

The Handshake Channel is necessary for special device functionalities like interrupt handling and
DPM access synchronization and therefore it has no user API functions offering access to this
channel.

CIFX API function names correspond to the function groups and channel definitions.

 xSysdevice..........() Functions and functionalities corresponding to the system channel
functionalities

 xChannel..............() Functions and functionalities corresponding communication channel
and its needs

 xDriver…..............() Functions to handle multiple devices in a common way

4 x Communication Channel

Dual-Port Memory

2 x User Channel Handshake
Channel

System
Channel

0 65535

API basics 13/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

3.2 Basic fieldbus data handling
NetX devices are providing two basic mechanisms to transfer user data between a fieldbus
protocol stack and user applications.

First one is the cyclic process data transfer mechanism (Transfer of the Process Data Image) and
the second one is the asynchronous data transfer mechanism (Packet Oriented Data Transfer).

Other information like configuration, diagnostic and device specific administration functions are
also based on the asynchronous data transfer mechanism.

 Asynchronous Data Transfer (Packet Oriented Data Transfer)
Data are transferred by using a data structure named rcX packet. Packet transfer between a
host system and the cifX hardware takes place via a, so called, mailbox system. This method
is used to transfer of SDO, administration, configuration and diagnostic data.

 Cyclic Process Data Transfer (Process Data Image Transfer)
Data are located in a process data image. This method is used for I/O based protocols (PDO
transfer).
Input and output data are located in separate memory areas which can be handled
independently.

Note: A complete description of the fieldbus data handling can be found in the netX Dual Port
Memory Interface manual

3.3 Fieldbus-specific information and functions
Beside the general device data in the DPM each fieldbus protocol stack comes with its own
specific data and functions. This specific information can be found in the corresponding protocol
API manuals.

Note: Fieldbus specific information and functionalities can be found in the corresponding
protocol API manuals (e. g. PROFIBUS DP Master Protocol API 15 EN.pdf).

CIFX API (Application Programming Interface) 14/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4 CIFX API (Application Programming Interface)
The API offers functions grouped into 'Driver', 'System Channel' and 'Communication Channel'
related functions.

4.1 API header files
The API comes with a single C header file.

API definition file: cifXUser.h
Error definitions: cifXError.h

4.2 Driver functions
The driver related functions are used to handle a driver and offers functions to identify the
connected hardware.

Function Description

xDriverOpen Opens the driver, allowing access to every driver function

xDriverClose Closes an open connection to the driver

xDriverGetInformation Retrieves driver information (e.g. Version)

xDriverGetErrorDescription Retrieves an English description of a cifX driver error code

xDriverEnumBoards Enumerate through all boards/devices the driver is managing

xDriverEnumChannels Enumerate through all channels located on a specific board

xDriverRestartDevice Restart a device

xDriverMemoryPointer Get/Release a pointer to the dual port memory.

This function must only be used for debugging purpose!
Table 7: Driver functions

CIFX API (Application Programming Interface) 15/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.3 System Device functions
Each communication board owns a System Device allowing generic access to the device. This
'System Device' only offers a small mailbox and system global status information and should not
be used to communicate with a protocol stack directly.

Function Description

xSysdeviceOpen Opens a connection to a boards system device

xSysdeviceClose Closes a connection to a system device

xSysdeviceInfo Gets System device specific information (e.g. mailbox size)

xSysdeviceReset Performs a device reset

xSysdeviceResetEx Performs a device reset with parameters

xSysdeviceBootstart Performs a device boot start.

netX 10/50/51/52/100/500: This will activate the Second Stage Boot Loader. The
Second Stage Boot Loader does not start the firmware.

netX 90/4000/4100: This will activate the Maintenance Firmware.

Note: Only possible on Flash-based devices.

xSysdeviceGetMBXState Retrieves the system mailbox state

xSysdeviceGetPacket Retrieves a pending packet from the system mailbox

xSysdevicePutPacket Sends a packet to the system mailbox

xSysdeviceDownload Downloads a file/configuration/firmware to the device

xSysdeviceFindFirstFile Finds the first file entry in the given directory

xSysdeviceFindNextFile Finds the next file entry in the given directory

xSysdeviceUpload Uploads a file/configuration/firmware from the device

xSysdeviceExtendedMemory Gets a pointer to an available extended memory area
Table 8: System Device functions

CIFX API (Application Programming Interface) 16/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.4 Communication Channel functions
Each protocol stack is represented as a Communication Channel.

Communication channels owning a set of functions, allowing every possible interaction with the
protocol stack.

The CIFX API functions are protocol stack independent and used for all available Hilscher netX
based protocol stacks. Only the data content is protocol specific and must be interpreted by the
user application.

Communication Channel functions:

Function Description

xChannelOpen Opens a connection to a communication channel

xChannelClose Closes a connection

Asynchronous services (Packets)

xChannelGetMBXState Retrieve the channels mailbox state

xChannelGetPacket Retrieve a pending packet from the channel mailbox

xChannelPutPacket Send a packet to the channel mailbox

xChannelGetSendPacket Read back the last sent packet

Device Administrational/Informational functions

xChannelDownload Download a file/configuration to the channel

xChannelReset Reset the channel

xChannelInfo Retrieve channel specific information

xChannelWatchdog Activate/Deactivate/Trigger the channel Watchdog

xChannelHostState Set the application state flag in the application COS flags, to
signal the hardware if an application is running or not

xChannelBusState Set the bus state flag in the application COS state flags, to start
or stop fieldbus communication.

xChannelControlBlock Access the channel control block

xChannelCommonStatusBlock Access to the common status block

xChannelExtendedStatusBlock Access to the extended status block

xChannelUserBlock Access user block (not implemented yet!)

Cyclic Data services (I/O's)

xChannelIORead Instructs the device to place the latest data into the DPM and
passes them to the user

xChannelIOWrite Copies the data to the DPM and waits for the firmware to retrieve
them

xChannelIOReadSendData Reads back the last send data

Cyclic Data services (I/O's, PLC optimized)

xChannelPLCMemoryPtr Get a pointer to the I/O memory block

xChannelPLCActivateRead Instruct the firmware to place the latest input data into the I/O
memory block (no wait for completion)

xChannelPLCActivateWrite Instruct the firmware to retrieve the latest output data from the I/O
memory block (no wait for completion)

xChannelPLCIsReadReady Checks if the last read activation has finished

xChannelPLCIsWriteReady Checks if the last write activation has finished

CIFX API (Application Programming Interface) 17/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Function Description

DMA services

xChannelDMAState Activate/Deactivate DMA mode

Bus synchronous operation

xChannelSyncState Wait for synchronization events or trigger / acknowledge a sync
event

Notification services (only available in Interrupt mode)

xChannelRegisterNotification Register a notification callback

xChannelUnregisterNotification Un-register a notification callback
Table 9: Communication Channel functions

CIFX API (Application Programming Interface) 18/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.5 Structure definitions

Note: All structures are byte packed, for easy portability and data exchange via the DPM.

4.5.1 Driver information
When querying the driver information the following structure is expected in the function call.

DRIVER_INFORMATION

Element Type Description

abDriverVersion uint8_t[32] Human readable driver name and version

ulBoardCnt uint32_t Number of handled boards
Table 10: Driver information structure

4.5.2 Board information
The board information structure is used, when enumerating boards.

BOARD_INFORMATION

Element Type Description

lBoardErrror uint32_t Global board error (currently not used always 0)

abBoardName uint8_t[16] This is the name of the board which can be used for opening a channel or
the system device on it.

abBoardAlias uint8_t[16] This is an alternate, user-definable name for the device

ulBoardID uint32_t Unique driver created board identifier

ulSystemError uint32_t Boot-up/System error, when trying to handle device

ulPhysicalAddress uint32_t Physical address of the device's DPM

ulIrqNumber uint32_t Interrupt number assigned to the device

bIrqEnabled uint32_t Defines if the interrupt is used by the driver, or if the driver works in polling
mode for this device

ulChannelCnt uint32_t Number of available channels

ulDpmTotalSize uint32_t Total size of the dual port in bytes

tSystemInfo SYSTEM_CHANNEL_SYSTEM_INFO_BLOCK (see below)
Table 11: Board information structure

CIFX API (Application Programming Interface) 19/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.5.3 System channel information
The following structures are returned on calls to xSysdeviceInfo() depending on the passed
command parameter:

Command: CIFX_INFO_CMD_SYSTEM_INFORMATION

SYSTEM_CHANNEL_SYSTEM_INFORMATION

Element Type Description

ulSystemError uint32_t Boot-up/System error, when trying to handle device

ulDpmTotalSize uint32_t Total size of the dual port in bytes

ulMBXSize uint32_t Size of the system mailbox in bytes

ulDeviceNumber uint32_t Device number (as found on the matrix label)

ulSerialNumber uint32_t Serial number (as found on the matrix label)

ulOpenCnt uint32_t Number of times this device is open
Table 12: System channel information

Command: CIFX_INFO_CMD_SYSTEM_INFO_BLOCK

SYSTEM_CHANNEL_SYSTEM_INFO_BLOCK

Element Type Description

abCookie uint8_t[4] System channel identifier MUST be "netX"

ulDpmTotalSize uint32_t Total size of the dual port in bytes

ulDeviceNumber uint32_t Device number (as found on the matrix label)

ulSerialNumber uint32_t Serial number (as found on the matrix label)

ausHwOptions uint16_t[4] Array of hardware options for all four possible ports of the netX

usManufacturer uint16_t Manufacturer ID

usProductionDate uint16_t Production date code

ulLicenseFlags1 uint32_t Hilscher dedicated license flags (e.g. fieldbus license)

ulLicenseFlags2 uint32_t Hilscher dedicated license flags (e.g. additional information)

usNetxLicenseID uint16_t Special netX user license information

usNetxLicenseFlags uint16_t Dedicated netX user license information

usDeviceClass uint16_t Hardware device class (e.g. CIFX / COMX etz.)

bHwRevision uint8_t Hardware revision

bHwCompatibility uint8_t Hardware compatibility list

bDevIdNumber uint8_t Device identification number (rotary switch)

bReserved uint8_t unused/reserved

usReserved uint16_t unused/reserved
Table 13: System channel info block

CIFX API (Application Programming Interface) 20/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Command: CIFX_INFO_CMD_SYSTEM_CHANNEL_BLOCK

SYSTEM_CHANNEL_CHANNEL_INFO_BLOCK

Element Type Description

abInfoBlock uint8_t[8][16] Channel information in the system channel
Table 14: System Channel - Channel Info Block

Area definitions in cifXUser.h:

CIFX_MAX_NUMBER_OF_CHANNEL_DEFINITION = 8

CIFX_SYSTEM_CHANNEL_DEFAULT_INFO_BLOCK_SIZE = 16

Note: To evaluate the content of the abInfoBlock array, refer to the netX DPM Interface
Manual and the rcX_User.h, structure NETX_CHANNEL_INFO_BLOCK.

Command: CIFX_INFO_CMD_SYSTEM_CONTROL_BLOCK

SYSTEM_CHANNEL_SYSTEM_CONTROL_BLOCK

Element Type Description

ulSystemCommandCOS uint32_t System channel host COS flags

ulSystemControl uint32_t netX 10/50/51/52/100/500: Reserved, not used.

netX 90/4000/4100: System channel control.
Table 15: System channel control block

Command: CIFX_INFO_CMD_SYSTEM_STATUS_BLOCK

SYSTEM_CHANNEL_SYSTEM_STATUS_BLOCK

Element Type Description

ulSystemCOS uint32_t System channel device COS flags

ulSystemStatus uint32_t Actual system state

ulSystemError uint32_t Actual system error

ulBootError uint32_t Error code from the second stage boot loader (only valid if
Cookie="BOOT")

ulTimeSinceStart uint32_t Time since system start in seconds

usCpuLoad uint16_t CPU load in 0,01% units (10000 => 100%)

usReserved uint16_t Reserved for later use

ulHWFeatures Uint32_t Information about hardware features (e.g. MRAM / RTC)

abReserved uint8_t[36] unused/reserved
Table 16: System channel status block

CIFX API (Application Programming Interface) 21/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.5.4 Communication channel information
The following structure is returned on calls to xChannelInfo() or when enumerating channels on a
Board using xDriverEnumChannels():

CHANNEL_INFORMATION

Element Type Description

abBoardName uint8_t[16] This is the name of the board which can be used for opening a channel or
the system device on it.

abBoardAlias uint8_t[16] This is an alternate, user-definable name for the device

ulDeviceNumber uint32_t Device number (as found on the matrix label)

ulSerialNumber uint32_t Serial number (as found on the matrix label)

usFWMajor uint16_t Major version number of firmware

usFWMinor uint16_t Minor version number of firmware

usFWBuild uint16_t Build number of firmware

usFWRevision uint16_t Revision version number of firmware

bFWNameLength uint8_t Length of firmware name

abFWName uint8_t[63] Firmware name

usFWYear uint16_t Build year of firmware

bFWMonth uint8_t Build month of firmware (1..12)

bFWDay uint8_t Build day of firmware (1..31)

ulChannelError uint32_t Communication channel error from the "Common Status Block"

ulOpenCnt uint32_t Number of calls to xChannelOpen for this channel

ulPutPacketCnt uint32_t Number of successful transmitted packets

ulGetPacketCnt uint32_t Number of successfully received packets

ulMailboxSize uint32_t Mailbox size in Bytes

ulIOInAreaCnt uint32_t Number of I/O Input areas

ulIOOutAreaCnt uint32_t Number of I/O output areas

ulHskSize uint32_t RCX_HANDSHAKE_SIZE_8BIT (0x01) or

RCX_HANDSHAKE_SIZE_16BIT (0x02)

ulNetxFlags uint32_t Actual netX communication flags (usNetxCommFlag)

ulHostFlags uint32_t Actual host communication flags (usHostCommFlags)

ulHostCOSFlags uint32_t Actual applicaton COS flags (ulApplicationCOS of Control Block)

ulDeviceCOSFlags uint32_t Actual communication COS flags (ulCommunicationCOS of Common
Status Block)

Table 17: Channel information structure

CIFX API (Application Programming Interface) 22/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6 Driver related functions

4.6.1 xDriverOpen
This function opens a connection / handle to the cifX driver.

Function call:
int32_t xDriverOpen(CIFXHANDLE* phDriver)

Arguments:

Argument Data type Description
phDriver CIFXHANDLE* returned handle to the driver

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 23/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.2 xDriverClose
This function closes a connection / handle to the cifX driver.

Function call:
int32_t xDriverClose(CIFXHANDLE hDriver)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle returned by xDriverOpen

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 24/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.3 xDriverGetInformation
This function retrieves all driver specific information, like version number, build date, etc.

Function call:
int32_t xDriverGetInformation(CIFXHANDLE hDriver

uint32_t ulSize,
void* pvDriverInfo)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle returned by xDriverOpen
ulSize uint32_t Size of the passed structure
pvDriverInfo void* Pointer to a DRIVER_INFORMATION structure, to place

returned values in.

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Example:
DRIVER_INFORMATION tDriverInfo = {0};
int32_t lRet = xDriverGetInformation(NULL, sizeof(tDriverInfo), &tDriverInfo);
if(lRet == CIFX_NO_ERROR)
{
}

CIFX API (Application Programming Interface) 25/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.4 xDriverGetErrorDescription
Look up function for driver errors. The function returns a human-readable error description (English
only).

Function call:
int32_t xDriverGetErrorDescription(int32_t lError,

char* szBuffer,
uint32_t ulBufferLen)

Arguments:

Argument Data type Description
lError int32_t Error value returned by any driver function
szBuffer String Pointer to a ASCII string buffer, to place returned text in
ulBufferLen uint32_t length of the string buffer for returned data

Return values:

CIFX_NO_ERROR if the function succeeds.

Example:
// Read driver error description
char szError[1024] ={0};
xDriverGetErrorDescription(lError, szError, sizeof(szError));

CIFX API (Application Programming Interface) 26/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.5 xDriverEnumBoards
Enumerate all currently handled boards/cards of the driver.

Function call:
int32_t xDriverEnumBoards(CIFXHANDLE hDriver,

uint32_t ulBoard,
uint32_t ulSize
void* pvBoardInfo)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
ulBoard uint32_t Board number to return info for.

This must be incremented from zero until an error is
returned to query all boards

ulSize uint32_t length of the Structure passed in pvBoardInfo
pvBoardInfo void* Pointer to returned BOARD_INFORMATION structure

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Example:
int32_t lBoardRet;
do {
 BOARD_INFORMATION tBoardInfo = {0};
 lBoardRet = xDriverEnumBoards(NULL, ulBoardIdx++, sizeof(tBoardInfo), &tBoardInfo);

 if(lBoardRet == CIFX_NO_ERROR)
 {
 }
} while(lBoardRet == CIFX_NO_ERROR);

CIFX API (Application Programming Interface) 27/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.6 xDriverEnumChannels
Enumerate all available channels on a board/card.

Function call:
int32_t xDriverEnumChannels(CIFXHANDLE hDriver,

uint32_t ulBoard,
uint32_t ulChannel
uint32_t ulSize
void* pvChannelInfo)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
ulBoard uint32_t Board number to return info for (constant during channel

enumeration).
ulChannel uint32_t Channel number to enumerate.

This must be incremented from zero until an error is
returned to query all channels

ulSize uint32_t length of the Structure passed in pvBoardInfo
pvChannelInfo void* Pointer to returned CHANNEL_INFORMATION structure

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Example:
int32_t lChannelRet;
do {
 CHANNEL_INFORMATION tChannelInfo = {0};
 lChannelRet = xDriverEnumChannels(NULL, ulBoardIdx, ulChannelIdx++,
 sizeof(tChannelInfo), &tChannelInfo);
 if(lChannelRet == CIFX_NO_ERROR)
 {

 }
} while(lChannelRet == CIFX_NO_ERROR);

CIFX API (Application Programming Interface) 28/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.7 xDriverRestartDevice
The function can be used to restart a netX board. The driver processes the same functions like on
a power on reset (reset the hardware and download the boot loader, firmware and configuration
files etc.).

A restart is necessary on PCI based netX boards if a running firmware should be updated or
changed. Because on such boards the firmware is not stored in a Flash file system and updating
the firmware while it is running in RAM is not possible.
On Windows based systems a restart can also be performed using the Windows Device Manager
to deactivate/activate the board.

Note: A restart is only performed if no application has an open handle to the board or one of
its communication channels.

Function call:
int32_t APIENTRY xDriverRestartDevice(CIFXHANDLE hDriver,

char* szBoardName,
void* pvData);

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
szBoardName String Identifier for the Board.

(e.g. "cifX<Board Number>")
pvData void* For further extensions can be NULL

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 29/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.6.8 xDriverMemoryPointer
Return a pointer to the dual port memory of a board/channel. This function should only be used for
debugging purposes, because the function only maps the card memory into the processes memory
area.

Function call:
int32_t xDriverMemoryPointer (CIFXHANDLE hDriver,

uint32_t ulBoard,
uint32_t ulCmd,
void* pvMemoryInfo)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
ulBoard uint32_t Board number to return pointer for.
ulCmd uint32_t Maps the dual port memory for direct access from an

application
1 = CIFX_MEM_PTR_OPEN
Map a user specific memory area
2 = CIFX_MEM_PTR_USR -> not supported
Release the dual port pointer (same memory structure
MUST be passed)
3 = CIFX_MEM_PTR_CLOSE

pvMemoryInfo void* Pointer to returned MEMORY_INFORMATION structure
Note: The Parameter ulChannel must be inserted!

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Description of the MEMORY_INFORMATION Structure:

Value Data type Description
pvMemoryID void* Identifier of the memory area
ppvMemoryPtr void** Memory pointer
pulMemorySize uint32_t* Complete size of the mapped memory
ulChannel uint32_t* Requested channel number
pulChannelStartOffset uint32_t* Start offset of the requested channel
pulChannelSize uint32_t* Memory size of the requested channel

CIFX API (Application Programming Interface) 30/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

MEMORY_INFORMATION Structure:
/***/
/*! Memory Information structure */
/***/
typedef __CIFx_PACKED_PRE struct MEMORY_INFORMATIONtag
{
 void* pvMemoryID; /*!< Identification of the memory area */
 void** ppvMemoryPtr; /*!< Memory pointer */
 uint32_t* pulMemorySize; /*!< Complete size of the mapped memory */
 uint32_t ulChannel; /*!< Requested channel number */
 uint32_t* pulChannelStartOffset;/*!< Start offset of the requested channel */
 uint32_t* pulChannelSize; /*!< Memory size of the requested channel */
} __CIFx_PACKED_POST MEMORY_INFORMATION;

Example:
//===
// Test memory pointer
//
//
//===
void TestMemoryPointer(void)
{
 unsigned char abBuffer[100] = {0};

 // Open channel
 uint32_t ulMemoryID = 0;
 unsigned char* pabDPMMemory = NULL;
 uint32_t ulMemorySize = 0;
 uint32_t ulChannelStartOffset = 0;
 uint32_t ulChannelSize = 0;
 long lRet = CIFX_NO_ERROR;

 MEMORY_INFORMATION tMemory = {0};
 tMemory.pvMemoryID = &ulMemoryID; // Identification of the memory area
 tMemory.ppvMemoryPtr = (void**)&pabDPMMemory; // Memory pointer
 tMemory.pulMemorySize = &ulMemorySize; // Complete size of the mapped memory
 tMemory.ulChannel = CIFX_NO_CHANNEL; // Requested channel number
 tMemory.pulChannelStartOffset = &ulChannelStartOffset; // Start offset of the requested channel
 tMemory.pulChannelSize = &ulChannelSize; // Memory size of the requested channel

 // Open a DPM memory pointer
 lRet = xDriverMemoryPointer(NULL, 0, CIFX_MEM_PTR_OPEN, &tMemory);
 if(lRet != CIFX_NO_ERROR)
 {
 // Failed to get the memory mapping
 ShowError(lRet);
 } else
 {
 // We have a memory mapping 1
 // Read 100 Bytes
 memcpy(abBuffer, pabDPMMemory, sizeof(abBuffer));

 memcpy(pabDPMMemory, abBuffer, sizeof(abBuffer));
 }

 // Return the DPM memory pointer
 lRet = xDriverMemoryPointer(NULL, 0, CIFX_MEM_PTR_CLOSE, &tMemory);
 ShowError(lRet);

}

CIFX API (Application Programming Interface) 31/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7 System device specific functions
The system device is an additional device created by the device driver for each card. The
corresponding data area in the DPM is called system channel. All global board information is
located in this channel and all functions of the system device are related to the whole card.

For example the processing of a system reset, downloading a channel firmware etc. Downloads
are processed via an own mailbox system which is independently from the communication
channels.

The device driver uses the system channel for administrative functions (e.g. card start-up) or to
process a card reset.

Usually an application has not to work with the system channel as long as it is designed to work
with a specific communication channel or fieldbus system.

4.7.1 xSysdeviceOpen
Open a connection to a system device on the passed board.

Function call:
int32_t xSysdeviceOpen(CIFXHANDLE hDriver,

char* szBoard,
CIFXHANDLE* phSysdevice);

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle of the driver
szBoard String Identifier for the Board. Can by cifX<Board Number> or the associated

alias.
phSysdevice CIFXHANDLE* Returned handle to the system device, to be used on all other

sysdevice functions

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 32/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.2 xSysdeviceClose
Close a connection to a system device.

Function call:
int32_t xSysdeviceClose(CIFXHANDLE hSysdevice)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device that is to be closed.

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 33/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.3 xSysdeviceInfo
Query information about the opened system device.

Function call:
int32_t xSysdeviceInfo(CIFXHANDLE hSysdevice,

uint32_t ulCmd
uint32_t ulSize,
void* pvInfo)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device
ulCmd uint32_t Available Commands:

1 = CIFX_INFO_CMD_SYSTEM_INFORMATION
2 = CIFX_INFO_CMD_SYSTEM_INFO_BLOCK
3 = CIFX_INFO_CMD_SYSTEM_CHANNEL_BLOCK
4 = CIFX_INFO_CMD_SYSTEM_CONTROL_BLOCK
5 = CIFX_INFO_CMD_SYSTEM_STATUS_BLOCK

ulSize uint32_t Size of the passed system info buffer

pvInfo void* Pointer to SYSTEM_CHANNEL_INFORMATION structure for
returned data

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 34/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.4 xSysdeviceReset
This function performs a firmware restart. Depending on the hardware and the implementation in
the firmware, this is a software restart or a complete hardware reset.

Usually a software reset is performed.

Note: All channels will be reset.

Function call:
int32_t xSysdeviceReset(CIFXHANDLE hSysdevice

uint32_t ulTimeout)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device
ulTimeout uint32_t Timeout in ms to wait for reset to complete

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 35/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.5 xSysdeviceResetEx
This function performs a firmware restart in a specific restart mode and additional parameters.
Depending on the hardware and the implementation in the firmware, this is a software restart or a
complete hardware reset. Usually a software reset is performed.

Note: All channels will be reset.

Function call:
int32_t xSysdeviceResetEx(CIFXHANDLE hSysdevice

uint32_t ulTimeout,
uint32_t ulMode)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device
ulTimeout uint32_t Timeout in ms to wait for reset to complete
ulMode uint32_t Reset Mode & Parameter (see following tables)

For netX 90/4000/4100 only:
Variable: ulMode

Bit No. Definition / Description
31..9 empty / undefined
8 Delete complete remanent data area after reset.

1 = For mode “bootstart” and “updatestart”, this value specifies that the remanent data area will be deleted.
0 = Remanent data area will not be deleted.

7..4 Reset parameter for mode “update start”
Arguments that will be evaluated during “update start”.
0x0 ... 0xF = Specifies the firmware variant to be installed. 0x0 corresponds to VAR0, 0x1 corresponds to
VAR1, etc.

CIFX API (Application Programming Interface) 36/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

3..0 Reset Mode
0 = CIFX_RESETEX_SYSTEMSTART

System start
The system start will perform a reset (coldstart) of the device and will start the installed firmware again.
1 = reserved

2 = CIFX_RESETEX_BOOTSTART

Boot start
Note: The boot start is usable for Flash-based devices only.
The boot start will perform a reset of the device and start the maintenance firmware. The boot start can be
used to activate the maintenance firmware without starting an update process (idle mode).
3 = CIFX_RESETEX_UPDATESTART

Update start
The update start will perform a reset of the device and start the maintenance firmware.
If a valid update file is available, it will be automatically processed and installed.
If no update file is available or if the update file is not valid, the maintenance firmware will change into error
mode , changes the SYS LED (to yellow on) and sets an error code (e.g. ERR_HIL_NOT_AVAILABLE,
0xC0001152).

Other values are reserved

For netX 10/50/51/52/100/500 only:
Variable: ulMode

Bit No. Definition / Description
31..9 empty / undefined
8..4 Without function.
3..0 Reset Mode

0 = CIFX_RESETEX_SYSTEMSTART

System start
The system start will perform a reset (coldstart) of the device and will start the installed firmware again.
1 = reserved

2 = CIFX_RESETEX_BOOTSTART

Boot start
Note: The boot start is usable for Flash-based devices only.
This will activate the Second Stage Boot Loader (if available in the device). The Second Stage Boot Loader
does not start the firmware.
3 = CIFX_RESETEX_UPDATESTART

Update start
Function not available.

Other values are reserved

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 37/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.6 xSysdeviceBootstart
Performs a boot start on the hardware. This is necessary if the Second Stage Boot Loader (netX
10/50/51/52/100/500) or the Maintenance Firmware (netX 90/4000/4100) should be activated while
an executable Firmware is available.

Note: All channels will be reset.

Note: This function is only available on so called Flash-based devices where the Second
Stage Boot Loader or the Maintenance Firmware is stored in the Flash of the hardware.

Function call:
int32_t xSysdeviceBootstart(CIFXHANDLE hSysdevice

uint32_t ulTimeout)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device
ulTimeout uint32_t Timeout in ms to wait for reset to complete

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error is returned. For a list, see section Error codes on page 110.
You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 38/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.7 xSysdeviceGetMBXState
Retrieve the current load of the system device mailbox. This Function can be used to read the
actual state of the channels send and receive mailbox, without accessing the mailbox itself.

Note: Mailboxes are used to pass asynchronous data back and forth between the hardware
and the host system. The amount of concurrent active asynchronous commands is
limited by the hardware.

Function call:
int32_t xSysdeviceGetMBXState(CIFXHANDLE hSysdevice,

uint32_t* pulRecvPktCount,
uint32_t* pulSendPktCount)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
pulRecvPktCount uint32_t* Number of packets waiting to be received by Host
pulSendPktCount uint32_t* Number of packets the Host is able to send at once.

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 39/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.8 xSysdevicePutPacket
Insert an asynchronous command (packet) into the system device send mailbox to send it to the
hardware. This function uses the system device mailbox.

Function call:
int32_t xSysdevicePutPacket(CIFXHANDLE hSysdevice,

CIFX_PACKET* ptSendPacket,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the system device.
ptSendPacket CIFX_PACKET* Packet to be send. Total data length is acquired through

the ulLen element inside the structure.
ulTimeout uint32_t Time in ms to wait for the mailbox to get free.

0 means, do not wait

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 40/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.9 xSysdeviceGetPacket
Retrieve an already waiting, asynchronous data packet from the system device receive mailbox.

Function call:
int32_t xSysdeviceGetPacket(CIFXHANDLE hSysdevice,

uint32_t ulSize,
CIFX_PACKET* ptRecvPacket,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
ulSize uint32_t Size of the passed receive packet buffer
ptRecvPacket CIFX_PACKET* Buffer to returned packet
ulTimeout uint32_t Time in ms to wait for a receive message.

0 means, do not wait

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 41/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.10 xSysdeviceDownload
Downloading files to the board via the system device.

Due to the limited size of the mailbox these downloads are slower than using the channels mailbox
and should only be used if the channel's firmware is not running yet.

Download mode definitions can be found in the cifXUser.h file.

Available download modes:

Definition Mode Description
DOWNLOAD_MODE_FIRMWARE 1 Download a firmware file (file extension *.nxf)
DOWNLOAD_MODE_CONFIG 2 Download a fieldbus configuration file (file extension *.nxd)
DOWNLOAD_MODE_FILE 3 Download any file (file extension *.*)
DOWNLOAD_MODE_BOOTLOADER 4 Special download mode only supported by the Second Stage

Boot Loader to update itself in Flash memory

DOWNLOAD_MODE_LICENSECODE 5 Download a license file (file extension *.nxl)
License files containing license flags which are stored on the
hardware.

DOWNLOAD_MODE_MODULE 6 Download a firmware module file (file extension *.nxo)
Firmware modules are dynamically loadable and require a so-
called base firmware

Note: xSysdeviceDownload() is not working if called with
DOWNLOAD_MODE_FIRMWARE on so called "RAM-based devices" like on CIFX
PCI/PCIe cards or devices where the firmware is not stored into Flash.

It is not possible to use this function to download a firmware, because of the
circumstance that a firmware running in RAM is not able to update itself in RAM at the
same time.

Function call:
int32_t xSysdeviceDownload(CIFXHANDLE hSysdevice,

uint32_t ulChannel
uint32_t ulMode,
char* pszFileName,
uint8_t* pabFileData,
uint32_t ulFileSize,
PFN_PROGRESS_CALLBACK pfnCallback,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

CIFX API (Application Programming Interface) 42/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device, the download is performed

on.
ulChannel uint32_t Number of the channel, to receive the file
ulMode uint32_t Download mode (see above)
pszFileName char* Short file name of the passed data on the device.
pabFileData uint8_t* File data to download.
ulFileSize uint32_t Length of the file in bytes
pfnCallback PFN_PROGRESS_CALLBACK Callback function to indicate the download progress.

Passing NULL will suppress callbacks.
pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during

this function. Passing NULL will suppress callbacks and
discard received packets that do not belong to the file
download.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 43/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.11 xSysdeviceFindFirstFile
Start enumerating a directory on the device. This call will deliver the first directory/file entry on the
device if available.

Function call:
int32_t xSysdeviceFindFirstFile(CIFXHANDLE hSysdevice,

uint32_t ulChannel,
CIFX_DIRECTORYENTRY* ptDirectoryInfo,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
ulChannel uint32_t Channel number
ptDirectoryInfo CIFX_DIRECTORYENTRY* Returned first directory entry.

The szFilename entry can be used to start enumerating on
a special file.
Must be a zero length string to enumerate the whole
directory.

pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this
function. Passing NULL will suppress callbacks and
discard received packets that do not belong to the file
search.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 44/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.12 xSysdeviceFindNextFile
Continue enumerating a directory on the device. This function must be called with a previously
returned directory entry structure from xSysdeviceFindFirstFile().

Function call:
int32_t xSysdeviceFindNextFile (CIFXHANDLE hSysdevice,

uint32_t ulChannel,
CIFX_DIRECTORYENTRY* ptDirectoryInfo,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
ulChannel uint32_t Channel number
ptDirectoryInfo CIFX_DIRECTORYENTRY* Returned directory entry.
pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this

function. Passing NULL will suppress callbacks and
discard received packets that do not belong to the file
search.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 45/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.13 xSysdeviceUpload
Upload a given file from the device.

Function call:
int32_t xSysdeviceUpload(CIFXHANDLE hSysdevice,

uint32_t ulChannel,
uint32_t ulMode,
char* pszFilename,
uint8_t* pabFileData,
uint32_t* pulFileSize,
PFN_PROGRESS_CALLBACK pfnCallback,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
ulChannel uint32_t Channel number of the file
ulMode uint32_t Upload Mode (see section xSysdeviceUpload on page 45)

pszFilename char* Name of the file to upload (must conform to 8.3 filename
rules)

pabFileData uint8_t* Buffer to place uploaded data in
pulFileSize uint32_t * [in] Size of the buffer,

[out] Number of uploaded bytes
pfnCallback PFN_PROGRESS_CALLBACK Callback function to indicate the download progress.

Passing NULL will suppress callbacks.
pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this

function. Passing NULL will suppress callbacks and
discard received packets that do not belong to the file
upload.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 46/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.7.14 xSysdeviceExtendedMemory
netX based PCI hardware is able to offer a second PCI memory window used to accesses
additional hardware memory, independent of the existing Hilscher dual-port-memory resource.

Depending on the netX hardware, the type of memory resource could differ. Current hardware
offers a MRAM (Magneto resistive Random Access Memory) resource.

The type of additional memory, assembled on the hardware, is defined by information in the
hardware security memory. The information is used by the boot loader and firmware to detect and
initialize access to the additional memory and the information is also stored in the
NETX_SYSTEM_STATUS_BLOCK (see ulHWFeatures) to be accessible by a user application.

The xSysdeviceExtendedMemory() function offers a command parameter to allowing reading
information and getting/returning the pointer to the extended memory.

Function call:
int32_t xSysdeviceExtendedMemory(CIFXHANDLE hSysdevice,

uint32_t ulCmd,
CIFX_EXTENDED_MEMORY_INFORMATION* ptExtMemData);

Arguments:

Argument Data type Description
hSysdevice CIFXHANDLE Handle of the system device.
ulCmd uint32_t Extended Memory Commands:

1 = CIFX_GET_EXTENDED_MEMORY_INFO
2 = CIFX_GET_EXTENDED_MEMORY_POINTER
3 = CIFX_FREE_EXTENDED_MEMORY_POINTER

ptExtMemData CIFX_EXTENDED_MEMORY_IN
FORMATION*

Pointer to a extended memory structure, to store /pass
information between driver and application

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Description of the CIFX_EXTENDED_MEMORY_INFORMATION Structure:

Value Data type Description
pvMemoryID void* Identifier of the memory area
pvMemoryPtr void* Memory pointer to the extended memory area
ulMemorySize uint32_t Size of the extended memory area
ulMemoryType uint32_t Type of the extended memory area (e.g. MRAM)

CIFX API (Application Programming Interface) 47/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

ulMemoryInformation:

 Extended Memory

31..16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 RAM Type:
0 = None
1 = MRAM 64*16 Bit (1 MBit/128 KB)

Reserved

Access Type:
00 = No access
01 = external access (host)
10 = internal access
11 = external and internal access reserved

Unused set to 0

Note: ulMemoryType defines the type of the assembled/offered memory by the hardware.
The type is defined in the hardware security memory.

Available definitions (see rcX_User.h):

#define RCX_SYSTEM_EXTMEM_TYPE_MSK 0x0000000F

#define RCX_SYSTEM_EXTMEM_TYPE_NONE 0x00000000

#define RCX_SYSTEM_EXTMEM_TYPE_MRAM_128K 0x00000001

#define RCX_SYSTEM_EXTMEM_ACCESS_MSK 0x000000C0

#define RCX_SYSTEM_EXTMEM_ACCESS_NONE 0x00000000

#define RCX_SYSTEM_EXTMEM_ACCESS_EXTERNAL 0x00000040

#define RCX_SYSTEM_EXTMEM_ACCESS_INTERNAL 0x00000080

#define RCX_SYSTEM_EXTMEM_ACCESS_BOTH 0x000000C0

Note: RCX_SYSTEM_EXTMEM_ACCESS_EXTERNAL defines exclusive access by a host
application while RCX_SYSTEM_EXTMEM_ACCESS_INTERNAL defines exclusive
access by the firmware.
RCX_SYSTEM_EXTMEM_ACCESS_BOTH defines access for the firmware and host
application. In this case, first half of the memory is reserved for the host application,
starting at offset 0 and the second half of the memory is used by the firmware, starting
at offset memory size / 2.

CIFX API (Application Programming Interface) 48/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

CIFX_EXTENDED_MEMORY_INFORMATION structure:
/***/
/*! Extended memory information structure */
/***/
typedef __CIFx_PACKED_PRE struct CIFX_EXTENDED_MEMORY_INFORMATIONtag
{
 void* pvMemoryID; /*!< Identification of the memory area */
 void* pvMemoryPtr; /*!< Memory pointer */
 uint32_t ulMemorySize; /*!< Memory size of the Extended memory area */
 uint32_t ulMemoryType; /*!< Memory type information */

} __CIFx_PACKED_POST CIFX_EXTENDED_MEMORY_INFORMATION;

Example:
//===
// Test memory pointer
//
//
//===
void TestExtendedMemoryPointer(void)
{
 CIFXHANDLE hSysdevice = NULL;
 int32_t lRet = CIFX_NO_ERROR;
 uint8_t abBuffer[100] = {0};

 printf("\n--- Test Extended Memory Pointer ---\r\n");

 lRet = xSysdeviceOpen(NULL, "CIFX0", &hSysdevice);

 if (CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 } else
 {
 CIFX_EXTENDED_MEMORY_INFORMATION tExtMemory = {0};

 // Open a DPM memory pointer
 lRet = xSysdeviceExtendedMemory(hSysdevice, CIFX_GET_EXTENDED_MEMORY_INFO,
 &tExtMemory);
 if(lRet != CIFX_NO_ERROR)
 {
 // Failed to get the memory mapping
 ShowError(lRet);
 } else
 {
 /* Get an extended memory pointer */
 lRet = xSysdeviceExtendedMemory(hSysdevice, CIFX_GET_EXTENDED_MEMORY_POINTER,
 &tExtMemory);
 if(lRet != CIFX_NO_ERROR)
 {
 // Failed to get the memory mapping
 ShowError(lRet);
 }else
 {
 // We have a memory mapping
 uint8_t* pbExtMem = (uint8_t*)tExtMemory.pvMemoryPtr;

 while(1 == 1)
 {
 // Read 100 Bytes
 memcpy(abBuffer, pbExtMem, sizeof(abBuffer));

 printf("Read data from the extended memory (%d bytes):\n",
 sizeof(abBuffer));
 DumpData(abBuffer, sizeof(abBuffer));

CIFX API (Application Programming Interface) 49/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 printf("Increment the read data:\n");
 for (uint32_t ulIdx =0; ulIdx < sizeof(abBuffer); ulIdx++)
 {
 abBuffer[ulIdx] +=1;
 }

 printf("Write data back to the extened memory:\n");
 memcpy(pbExtMem, abBuffer, sizeof(abBuffer));

 printf("Type (A) for again and (S) to stop the extended read/write test:\n");
 if('S' == (toupper (_getch())))
 {
 break;
 }
 }
 lRet = xSysdeviceExtendedMemory(hSysdevice, CIFX_FREE_EXTENDED_MEMORY_POINTER,
 &tExtMemory);
 if(lRet != CIFX_NO_ERROR)
 {
 // Failed to free the memory mapping
 ShowError(lRet);
 }
 }
 }

 /* Close the system device */
 lRet = xSysdeviceClose(hSysdevice);
 if (CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 }
 }

 // Test done
 printf("\n Extended Memory Pointer test done\r\n");

}

CIFX API (Application Programming Interface) 50/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8 Channel-specific functions
Channels (Communication Channels) are the access to a specific fieldbus system running on the
netX hardware. Each channel has its own memory area in the DPM and can be handled
independently from other channels.

4.8.1 xChannelOpen
Open a connection to a communication / user channel on the given board.

Function call:
int32_t xChannelOpen(CIFXHANDLE hDriver,

char* szBoard,
uint32_t ulChannel,
CIFXHANDLE* phChannel)

Arguments:

Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
szBoard char* Identifier for the Board. Can by cifX<BoardNumber> or the

associated alias.
ulChannel uint32_t Channel number to open
phChannel CIFXHANDLE* Returned handle to the channel, to be used on all other

channel functions

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 51/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.2 xChannelClose
Close a connection to a communication channel.

Function call:
int32_t xChannelClose(CIFXHANDLE hChannel)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel that is to be closed.

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 52/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.3 xChannelDownload
Download a file via the communication channel.

Download modes are defined and described in the xSysdeviceDownload() function (see section
xSysdeviceUpload on page 45)

Note: xChannelDownload() is not working if called with
DOWNLOAD_MODE_FIRMWARE on so called "RAM based devices" like on CIFX
PCI/PCIe cards or devices where the firmware is not stored into Flash.

It is not possible to use this function to download a firmware, because of the
circumstance that a firmware running in RAM is not able to update itself in RAM at the
same time.

Function call:
int32_t xChannelDownload(CIFXHANDLE hChannel,

uint32_t ulMode,
char* pszFileName,
uint8_t* pabFileData,
uint32_t ulFileSize,
PFN_PROGRESS_CALLBACK pfnCallback,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel, the download is performed on.
ulMode uint32_t Download mode (see (see section xSysdeviceUpload on

page 45)
pszFileName char* Short file name of the passed data on the device.
pabFileData uint8_t* File data to download.
ulFileSize uint32_t Length of the downloaded file
pfnCallback PFN_PROGRESS_CALLBACK Callback function to indicate the download progress.

Passing NULL will suppress callbacks.
pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this

function. Passing NULL will suppress callbacks and
discard all received packets that do not belong to the file
download.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 53/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.4 xChannelFindFirstFile
Start enumerating a directory on the channel. This call will deliver the first directory/file entry on the
channel if available.

Function call:
int32_t xChannelFindFirstFile (CIFXHANDLE hChannel,

CIFX_DIRECTORYENTRY* ptDirectoryInfo,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the communication channel.
ptDirectoryInfo CIFX_DIRECTORYENTRY* Returned first directory entry.

The szFilename entry can be used to start enumerating on
a special file.
Must be a zero length string to enumerate the whole
directory.

pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this
function. Passing NULL will suppress callbacks and
discard all received packets that do not belong to the file
find.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 54/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.5 xChannelFindNextFile
Continue enumerating a directory on the channel. This function must be called with a previously
returned directory entry structure from xChannelFindFirstFile().

Function call:
int32_t xChannelFindNextFile (CIFXHANDLE hChannel,

CIFX_DIRECTORYENTRY* ptDirectoryInfo,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the communication channel.
ptDirectoryInfo CIFX_DIRECTORYENTRY* Returned directory entry.
pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this

function. Passing NULL will suppress callbacks and
discard all received packets that do not belong to the file
find.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 55/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.6 xChannelUpload
Upload a given file from the communication channel.

Function call:
int32_t xChannelUpload (CIFXHANDLE hChannel,

uint32_t ulMode,
char* pszFileNam e,
uint8_t* pabFileData,
uint32_t* pulFileSize,
PFN_PROGRESS_CALLBACK pfnCallback,
PFN_RECV_PKT_CALLBACK pfnRecvPktCallback,
void* pvUser)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the communication channel.
ulMode uint32_t Upload Mode (see section xSysdeviceUpload on page 45)
pszFileName char* Name of the file to upload (must conform to 8.3 filename

rules)
pabFileData uint8_t* Buffer to place uploaded data in
pulFileSize uint32_t * [in] Size of the buffer,

[out] Number of uploaded bytes
pfnCallback PFN_PROGRESS_CALLBACK Callback function to indicate the download progress.

Passing NULL will suppress callbacks.

pfnRecvPktCallback PFN_RECV_PKT_CALLBACK Callback function to receive unhandled packets during this
function. Passing NULL will suppress callbacks and
discard all received packets that do not belong to the file
upload.

pvUser void* User parameter which is passed on every callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 56/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.7 xChannelGetMBXState
Retrieve the current load of the given communication channel mailbox. This Function can be used
to read the actual state of the channels send and receive mailbox without accessing the mailbox
itself.

Note: Mailboxes are used to pass asynchronous data back and forth between the hardware
and the host system. The amount of concurrent active asynchronous commands is
limited by the hardware.

Function call:
int32_t xChannelGetMBXState(CIFXHANDLE hChannel,

uint32_t* pulRecvPktCount,
uint32_t* pulSendPktCount)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
pulRecvPktCount uint32_t* Number of packets waiting to be received by Host
pulSendPktCount uint32_t* Number of packets the Host is able to send at once.

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 57/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.8 xChannelPutPacket
Insert an asynchronous data packet into the given communication channel send mailbox to send it
to the hardware.

Function call:
int32_t xChannelPutPacket(CIFXHANDLE hChannel,

CIFX_PACKET* ptSendPacket,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ptSendPacket CIFX_PACKET* Packet to be send. Total data length is acquired through

the ulLen element inside the structure.
ulTimeout uint32_t Time in ms to wait for the mailbox to get free.

0 means, do not wait

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 58/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.9 xChannelGetPacket
Retrieve an already waiting, asynchronous data packet from the given communication channel
receive mailbox.

Function call:
int32_t xChannelGetPacket(CIFXHANDLE hChannel,

uint32_t ulBufferSize,
CIFX_PACKET* ptRecvPacket,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulBufferSize uint32_t Size of the passed receive packet buffer
ptRecvPacket CIFX_PACKET* Buffer to returned packet
ulTimeout uint32_t Time in ms to wait for a receive message.

0 means, do not wait

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 59/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.10 xChannelGetSendPacket
Retrieve the actual data packet send by the host, from the communication channel send mailbox.
This function is none destructive. It does not guarantee any data consistency, because data are
read without any synchronization.

The function is mainly used for debugging aids.

Function call:
int32_t xChannelGetSendPacket(CIFXHANDLE hChannel,

uint32_t ulBufferSize,
CIFX_PACKET* ptRecvPacket)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulBufferSize uint32_t Size of the passed packet buffer
ptRecvPacket CIFX_PACKET* Buffer to returned send packet

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 60/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.11 xChannelReset
Reset the given communication channel. The reset function offers a following two modes:

 CIFX_ CHANNELINIT Re-initialization of a communication channel

 CIFX_ SYSTEMSTART Restart the whole card

Function call:
int32_t xChannelReset(CIFXHANDLE hChannel,

uint32_t ulResetMode,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulResetMode uint32_t Type of reset to be performed
ulTimeout uint32_t Time in ms to wait for the channel to be ready again

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 61/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.12 xChannelInfo
Retrieve the global communication channel information.

Function call:
int32_t xChannelInfo(CIFXHANDLE hChannel,

uint32_t ulSize,
void* pvChannelInfo)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulSize uint32_t Length of the passed buffer.
pvChannelInfo void* Pointer to a CHANNEL_INFORMATION structure, for

returned data

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 62/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.13 xChannelIOInfo
Retrieve I/O information about the communication channel.

Function call:
int32_t xChannelIOInfo(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t ulAreaNumber,
uint32_t ulSize,
void* pvData)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd uint32_t 1 = CIFX_IO_INPUT_AREA

2 = CIFX_IO_OUTPUT_AREA

ulAreaNumber uint32_t Area number to query information for
ulSize uint32_t Length of the passed buffer.
pvData void* Pointer to a CHANNEL_IO_INFORMATION structure, for

returned data

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 63/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.14 xChannelWatchdog
Enable, trigger or disable the host watchdog. The watchdog function is used by a communication
channel to supervise the processing of the user application. If the watchdog is configured it will be
activated with the first call of the function xChannelWatchdog() passing the command
CIFX_WATCHDOG_START. Once activated, the application must trigger it cyclically, during the
configured watchdog time. The watchdog supervision is deactivated by passing
CIFX_WATCHDOG_STOP in the call of xChannelWatchdog().

Function call:
int32_t xChannelWatchdog(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t* pulTrigger)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd uint32_t Watchdog Command

Start and trigger the watchdog monitoring
1 = CIFX_WATCHDOG_START
Stop the watchdog monitoring
0 = CIFX_WATCHDOG_STOP

pulTrigger uint32_t* Last trigger value from the hardware

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 64/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.15 xChannelConfigLock
Lock the configuration of the channel against modification. If the configuration is locked, the
fieldbus stack does not allow doing a configuration update.

Function call:
int32_t xChannelConfigLock(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t* pulState,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

unit32_t Configuration Lock Command
Unlock configuration
0 = CIFX_CONFIGURATION_UNLOCK
Lock configuration
1 = CIFX_CONFIGURATION_LOCK
Read the locking state
2 = CIFX_CONFIGURATION_GETLOCKSTATE

pulState uint32_t* returned state, if the
CIFX_CONFIGURATION_GETLOCKSTATE command is
used

ulTimeout uint32_t Timeout in ms to wait for configuration lock becoming
active

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 65/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.16 xChannelHostState
Toggle the 'Application Ready State Flag' in the communication channel host handshake flags.
This function is used to signal a communication stack the presents of a user application.

How the fieldbus stack uses the information is stack depending. Usually the stack will use the
information to verify if the I/O data in the I/O image are valid.

Function call:
int32_t xChannelHostState(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t* pulState,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t Host State Command
Clears the application ready flag
0 = CIFX_HOST_STATE_NOT_READY
Sets the application ready flag
1 = CIFX_HOST_STATE_READY
Read the current state of the flag
2 = CIFX_HOST_STATE_READ

pulState uint32_t* Returns the actual state of the application ready flag if
CIFX_HOST_STATE_READ command is used

ulTimeout uint32_t Timeout in milliseconds.
If not 0, the function will wait the given time until the state
is changed

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 66/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.17 xChannelBusState
Toggle the 'Bus State Flag' in the communication channel handshake flags. Using this flag, the
host application allows or disallows the firmware to open network connections. If set
(CIFX_BUS_STATE_ON), the netX firmware tries to open network connections; if cleared
(CIFX_BUS_STATE_OFF), no connections are allowed and open connections are closed (See
reference [1] for further information).

In generally a fieldbus stack allows the configuration of the field bus start-up behavior. This can be
either 'automatic startup' or 'controlled startup'. If the stack is configured in 'controlled startup' (i.e.
the 'Bus State Flag' is cleared) it will not activate the bus communication until it receives a
CIFX_BUS_STATE_ON state in its handshake flags.

Note: Setting the ‘Bus State flag’ to CIFX_BUS_STATE_ON successfully does not
necessarily mean that the fieldbus stack has established a connection to the fieldbus
system. The routine will signal an absent connection by returning the error code
CIFX_DEV_NO_COM_FLAG (even though toggle of the ‘Bus state flag’ has
succeeded).

Function call:
int32_t xChannelBusState(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t* pulState,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t Bus State Commands:
Clears the BUS state flag
0 = CIFX_BUS_STATE_OFF
Sets the bus state flag
1 = CIFX_BUS_STATE_ON
Read the actual state of the bus state flag
2 = CIFX_BUS_STATE_GETSTATE

pulState uint32_t* Actual state returned
ulTimeout uint32_t Timeout in milliseconds.

If not 0, the function will wait until the communication has
reached the chosen state.

Return values:

CIFX_NO_ERROR if the function succeeds.

CIFX_DEV_NO_COM_FLAG if the function succeeds but fieldbus stack does not communicate.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 67/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.18 xChannelControlBlock
Reading / writing the communication channel control block.

Function call:
int32_t xChannelControlBlock (CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData);

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t Control block commands:
Read the block area
1 = CIFX_CMD_READ_DATA
Write the block area
2 = CIFX_CMD_WRITE_DATA

ulOffset uint32_t Start offset in the block area
ulDataLen uint32_t Number of bytes to read
pvData void* User buffer

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 68/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.19 xChannelCommonStatusBlock
Read the channels common status block.

Note: Writing of the common status block by an application is not allowed

Function call:
int32_t xChannelCommonStatusBlock (CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData);

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t Status block commands:
Read the block area
1 = CIFX_CMD_READ_DATA

ulOffset uint32_t Start offset in the block area
ulDataLen uint32_t Number of bytes to read
pvData void* User buffer

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 69/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.20 xChannelExtendedStatusBlock
Read the communication channels extended status block.

Note: Writing of the extended status block by an application is not allowed

Function call:
int32_t xChannelExtendedStatusBlock (CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData);

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t Extended status block commands:
Read the block area
1 = CIFX_CMD_READ_DATA

ulOffset uint32_t Start offset in the block area
ulDataLen uint32_t Number of bytes to read
pvData void* User buffer

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 70/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.21 xChannelUserBlock
not implemented yet!

CIFX API (Application Programming Interface) 71/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.22 xChannelIORead
The function reads the input process data image of a communication channel and afterwards it
instructs the fieldbus protocol to update input data image with actual (latest) fieldbus data.

If the function returns error CIFX_NO_COM_FLAG, the protocol stack does not have an active
network connection and the input data are not up to date. The protocol stack must be started and
configured (see errors CIFX_DEV_NOT_READY / CIFX_DEV_NOT_RUNNING).

Note: On the basis of the implementation, xChannelIORead() delivers the input data from the
"last" call of xChannelIORead() and not the "latest" input data from the fieldbus system.
This has the advantage that the function has not to wait for the data update of the
fieldbus protocol which could need a significant time which are several hundred
microseconds up to milliseconds depending to the configuration and the number of
devices connected to the fieldbus system. But also the limitation that the age of the
input data are depending of the cycle time used to call xChannelIORead().

Function call:
int32_t xChannelIORead(CIFXHANDLE hChannel,

uint32_t ulAreaNumber,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O Input area to get data from
ulOffset uint32_t Offset inside area to start reading data from
ulDataLen uint32_t Length of the data being retrieved
pvData void* Pointer to the return data buffer
ulTimeout uint32_t Timeout in ms to wait for I/O handshake completion of the

channel (if configured)

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 72/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.23 xChannelIOWrite
The function writes the output process data image of a communication channel and instructs the
fieldbus protocol to send the data to the fieldbus system.

The function can also be used to initialize the output data image the first time, before the fieldbus
system starts the network data transfer. The fieldbus protocol will always be informed to update the
internal output data image by the written data, even if the functions detects that no bus
communication is running (error return CIFX_NO_COM_FLAG).

The only requirement is a started and configured fieldbus protocol (see errors
CIFX_DEV_NOT_READY / CIFX_DEV_NOT_RUNNING).

Note: The function xChannelIOWrite() does not wait until the data are taken by the hardware
or physically transferred by the fieldbus system, because this depends at least on the
fieldbus connection and the cycle time of the fieldbus system which are usually
unknown.

Function call:
int32_t xChannelIOWrite(CIFXHANDLE hChannel,

uint32_t ulAreaNumber,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData,
uint32_t ulTimeout)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O Output area to send data to
ulOffset uint32_t Offset inside area to start writing data to
ulDataLen uint32_t Length of the data being send
pvData void* Pointer to the send data buffer
ulTimeout uint32_t Timeout in ms to wait for I/O handshake completion of the

channel (if configured)

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 73/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.24 xChannelIOReadSendData
Read back the actual content of the output process data image from a communication channel.

Function call:
int32_t xChannelIOReadSendData(CIFXHANDLE hChannel,

uint32_t ulAreaNumber,
uint32_t ulOffset,
uint32_t ulDataLen,
void* pvData)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O Output area to get data from
ulOffset uint32_t Offset inside area to start reading data from
ulDataLen uint32_t Length of the data being received
pvData void* Pointer to the returned data buffer

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 74/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25 PLC I/O image functions

Note: Do not use xChannelIORead()/xChannelIOWrite() functions while using the PLC
functions. If PLC functions are used, the application is responsible to synchronize I/O
data access by using the xChannelPLCIsReady...()/xChannelPLCActivate...()
functions. There is no internal synchronization mechanism available to synchronize
access states between xChannelIORead()/xChannelIOWrite() and the PLC functions.
Mixing the functions will result in unpredictable I/O states.

Some of the PLC programs (Programmable Logic Controller also known as SoftPLCs) are using an
own process data image layout. Such programs need to copy the process data, from the local
buffers, necessary for the standard xChannelIORead()/xChannelIOWrite() functions, into their own
data image layout. In such a case, process data are always copied two times. First time between
the cards I/O process data image and the local function buffers offered by the application and the
second time between the local buffers and the PLC specific process images.

PLC functions are design to save the copy between the cards I/O process data image and the local
function buffers (done by xChannelIORead()/xChannelIOWrite()).

Therefore xChannelIORead() and xChannelIOWrite() are split into separate functions. One function
to get data pointers to the input and output process data image which can be used by the
application to directly access the cards I/O process data image. And two other functions to control
and synchronize the access to the cards I/O process image data between the user application and
the fieldbus protocol, running on the card.

 xChannelPLCMemoryPtr
Getting the data pointers to the cards I/O process data image

 xChannelPLCActivateRead() / xChannelPLCActivateWrite()
Activate the data exchange of the cards I/O process data image with the fieldbus protocol
running on the card

 xChannelPLCIsReadReady() / xChannelPLCIsWriteReady()
Check if the fieldbus protocol has finished the access to the crads I/ process data image and
if the application is allowed to access the data

Important for the use of the functions is a prior call to the xChannelPLCMemoryPtr() function. This
will deliver the necessary pointers to the I/O process data image.

Note: If the PLC functions are used, the application is responsible to synchronize the data
access between the host and the communication channel.

Before closing an application, all memory pointers retrieved by calling xChannelPLCMemoryPtr(),
(command CIFX_MEM_PTR_OPEN) should be returned to the system to avoid memory leaks.
Pointers are returned by calling xChannelPLCMemoryPtr() using the CIFX_MEM_PTR_CLOSE
command.

CIFX API (Application Programming Interface) 75/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25.1 xChannelPLCMemoryPtr

Retrieve a memory pointer to the I/O data area for a PLC (Programmable Logic Controller). This
enables an application to write data directly to the dual port memory (I/O data image) without doing
a combined handshake like in xChannelIORead() or xChannelIOWrite().

Before closing an application, all retrieved pointers should be released to avoid system memory
leaks. Releasing a pointer is done by calling xChannelPLCMemoryPtr() using the
CIFX_MEM_PTR_CLOSE command.

Function call:
int32_t xChannelPLCMemoryPtr(CIFXHANDLE hChannel,

uint32_t ulCmd,
void* pvMemoryInfo)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd uint32_t PLC Memory Pointer Commands:

Acquire a memory pointer
1 = CIFX_MEM_PTR_OPEN
Map a user specific memory area
2 = CIFX_MEM_PTR_USR -> not supported
Release a memory pointer
3 = CIFX_MEM_PTR_CLOSE

pvMemoryInfo void* Pointer to PLC_MEMORY_INFORMATION structure.
This structure describes the requested area and also
contains the returned memory pointer on success

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 76/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Description of the PLC_MEMORY_INFORMATION Structure:

Value Data type Description
pvMemoryID void* Identifier of the memory area
ppvMemoryPtr void** Memory pointer
ulAreaDefinition uint32_t Input / Output area
ulAreaNumber uint32_t Area number (0..1)
pulIOAreaStartOffset uint32_t* Buffer to store the I/O area start offset
pulAreaSize uint32_t* Buffer to store the size of the I/O area

PLC_MEMORY_INFORMATION Structure:
/***/
/*! PLC Memory Information structure */
/***/
typedef __CIFx_PACKED_PRE struct PLC_MEMORY_INFORMATIONtag
{
 void* pvMemoryID; /*!< Identification of the memory area */
 void** ppvMemoryPtr; /*!< Memory pointer */
 uint32_t ulAreaDefinition; /*!< Input/output area */
 uint32_t ulAreaNumber; /*!< Area number */
 uint32_t* pulIOAreaStartOffset; /*!< Start offset */
 uint32_t* pulIOAreaSize; /*!< Memory size */
} __CIFx_PACKED_POST PLC_MEMORY_INFORMATION;

Example:
//===
// Test PLC Functions
//
//
//===
void TestPLCFunctions(void)
{
 unsigned char abBuffer[1000] = {0};
 uint32_t ulState = 0;

 printf("\n--- Test PLC functions ---\r\n");

 long lRet = CIFX_NO_ERROR;

 /* Open channel */
 CIFXHANDLE hDevice = NULL;
 lRet = xChannelOpen(NULL, "CIFx0", 0, &hDevice);
 if(lRet != CIFX_NO_ERROR)
 {
 ShowError(lRet);
 } else
 {
 /* Start PLC functions */
 unsigned char* pabDPMMemory = NULL;
 uint32_t ulAreaStartOffset = 0;
 uint32_t ulAreaSize = 0;
 long lRet = CIFX_NO_ERROR;
 long lRetIN = CIFX_NO_ERROR;
 long lRetOUT = CIFX_NO_ERROR;

 /* Define the memory structures for Input data */
 PLC_MEMORY_INFORMATION tMemory = {0};
 tMemory.pvMemoryID = NULL; // Identification of the memory area
 tMemory.ppvMemoryPtr = (void**)&pabDPMMemory; // Memory pointer
 tMemory.ulAreaDefinition = CIFX_IO_INPUT_AREA; // Input/output area
 tMemory.ulAreaNumber = 0; // Area number
 tMemory.pulIOAreaStartOffset = &ulAreaStartOffset; // Start offset of the requested channel
 tMemory.pulIOAreaSize = &ulAreaSize; // Memory size of the requested channel

 /* Define the memory structures for Output data */

CIFX API (Application Programming Interface) 77/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 unsigned char* pabDPMMemory_OUT = NULL;
 uint32_t ulAreaStartOffset_OUT = 0;
 uint32_t ulAreaSize_OUT = 0;

 PLC_MEMORY_INFORMATION tMemory_OUT = {0};
 tMemory_OUT.pvMemoryID = NULL; // Identification of the memory
area
 tMemory_OUT.ppvMemoryPtr = (void**)&pabDPMMemory_OUT; // Memory pointer
 tMemory_OUT.ulAreaDefinition = CIFX_IO_OUTPUT_AREA; // Input/output area
 tMemory_OUT.ulAreaNumber = 0; // Area number
 tMemory_OUT.pulIOAreaStartOffset = &ulAreaStartOffset_OUT; // Start offset of the requested
channel
 tMemory_OUT.pulIOAreaSize = &ulAreaSize_OUT; // Memory size of the requested
channel

 /* Open a DPM memory pointer */
 if ((CIFX_NO_ERROR != (lRetIN = xChannelPLCMemoryPtr(hDevice, CIFX_MEM_PTR_OPEN, &tMemory)))
||
 (CIFX_NO_ERROR != (lRetOUT = xChannelPLCMemoryPtr(hDevice, CIFX_MEM_PTR_OPEN,
&tMemory_OUT))))
 {
 // Failed to get the memory mapping
 ShowError(lRetIN);
 ShowError(lRetOUT);
 } else
 {
 uint32_t ulWaitBusCount = 100;

 /* Signal application is ready */
 lRet = xChannelHostState(hDevice, CIFX_HOST_STATE_READY, &ulState, 100);
 if(CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 }

 /* Wait until BUS is up and running */
 printf("\r\nWait until BUS communication is available!\r\n");
 do
 {
 lRet = xChannelBusState(hDevice, CIFX_BUS_STATE_ON, &ulState, 100);
 if(CIFX_NO_ERROR != lRet)
 {
 if(CIFX_DEV_NO_COM_FLAG != lRet)
 {
 ShowError(lRet);
 break;
 }
 } else if(1 == ulState)
 {
 /* Bus is ON */
 printf("\r\nBUS is ON!\r\n");
 break;
 }
 } while (--ulWaitBusCount > 0);

 if(0 == ulWaitBusCount)
 {
 ShowError(lRet);
 }

 /*----------------------*/
 /* Start cyclic data IO */
 /*----------------------*/
 if(CIFX_NO_ERROR == lRet)
 {
 printf("\n Press any key to stop \r\n");
 while (!_kbhit())
 {
 // We have a memory mapping, check if access to the DPM is allowed
 uint32_t ulReadState = 0;
 uint32_t ulWriteState = 0;

 /*--*/
 /* Check if we can access the INPUT image */
 /*--*/

 lRet = xChannelPLCIsReadReady (hDevice, 0, &ulReadState);
 if(CIFX_NO_ERROR != lRet)
 {

CIFX API (Application Programming Interface) 78/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 ShowError(lRet);
 } else if(1 == ulReadState)
 {
 /* It is allowed to read the image */
 /* Read 100 Bytes */
 memcpy(abBuffer, pabDPMMemory, sizeof(abBuffer));

 /* Activate transfer */
 lRet = xChannelPLCActivateRead (hDevice, 0);
 if(CIFX_NO_ERROR != lRet)
 ShowError(lRet);
 }

 /*---*/
 /* Check if we can access the OUTPUT image */
 /*---*/
 lRet = xChannelPLCIsWriteReady (hDevice, 0, &ulWriteState);
 if(CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 } else if(1 == ulWriteState)
 {
 /* It is allowed to write the image */
 pabDPMMemory_OUT[0]++;
 pabDPMMemory_OUT[1] = abBuffer[1];

 lRet = xChannelPLCActivateWrite (hDevice, 0);
 if(CIFX_NO_ERROR != lRet)
 ShowError(lRet);
 }
 }

 /* clean keyboard buffer */
 _getch();
 }
 }

 lRet = xChannelBusState(hDevice, CIFX_BUS_STATE_OFF, &ulState, 100);
 if(CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 }

 lRet = xChannelHostState(hDevice, CIFX_HOST_STATE_NOT_READY, &ulState, 100);
 if(CIFX_NO_ERROR != lRet)
 {
 ShowError(lRet);
 }

 /* Return the DPM memory pointer */
 if (NULL != pabDPMMemory)
 {
 lRet = xChannelPLCMemoryPtr(hDevice, CIFX_MEM_PTR_CLOSE, &tMemory);
 if(lRet != CIFX_NO_ERROR)
 /* Failed to return memory pointer */
 ShowError(lRet);
 }

 /* Return the DPM memory pointer */
 if (NULL != pabDPMMemory_OUT)
 {
 lRet = xChannelPLCMemoryPtr(hDevice, CIFX_MEM_PTR_CLOSE, &tMemory_OUT);
 if(lRet != CIFX_NO_ERROR)
 /* Failed to return memory pointer */
 ShowError(lRet);
 }

 // Close channel
 if(hDevice != NULL) xChannelClose(hDevice);
 }

 printf("\n Test PLC functions done\r\n");
}

CIFX API (Application Programming Interface) 79/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25.2 xChannelPLCActivateRead

Instruct the communication channel to refresh the input process data image. The end of the update
cycle must be checked by the application using the function xChannelPLCIsReadReady()

Note: Do not call this function while the actual state is 'not finished' (check with the
corresponding xChannelPLCIs......Ready() function), otherwise the result is
unpredictable.

Function call:
int32_t xChannelPLCActivateRead(CIFXHANDLE hChannel,

uint32_t ulAreaNumber)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O area to request a input data refresh

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 80/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25.3 xChannelPLCActivateWrite

Instruct the communication channel to refresh the output process data image with the data from
the dual port memory. The end of the update cycle must be checked by the user application, using
the function xChannelPLCIsWriteReady().

Note: Do not call this function while the actual state is 'not finished' (check with the
corresponding xChannelPLCIs......Ready() function), otherwise the result is
unpredictable.

Function call:
int32_t xChannelPLCActivateWrite(CIFXHANDLE hChannel,

uint32_t ulAreaNumber)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O area to request a output data refresh

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 81/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25.4 xChannelPLCIsReadReady

Check if the last read request of the I/O data image is processed and finished by the hardware.

Function call:
int32_t xChannelPLCIsReadReady(CIFXHANDLE hChannel,

uint32_t ulAreaNumber,
uint32_t* pulReadState)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O area to check for read request

completion
pulReadState uint32_t * Returned state of the handshake operation

0 = pending
!=0 = finished

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 82/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.25.5 xChannelPLCIsWriteReady

Check if the last write request handshake is processed and finished by the hardware.

Function call:
int32_t xChannelPLCIsWriteReady(CIFXHANDLE hChannel,

uint32_t ulAreaNumber,
uint32_t* pulWriteState)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulAreaNumber uint32_t Number of the I/O area to check for read request

completion
pulWriteState uint32_t* Returned state of the handshake operation

0 = pending
!=0 = finished

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 83/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.26 DMA functions

4.8.26.1 xChannelDMAState

Toggle the 'DMA Enable Flag' in the communication channel handshake flags. This function can be
used to change the I/O image transfer from DPM to bus-master-DMA mode. If PLC memory
functions are used, the I/O image pointers need to be re-read after enabling/disabling DMA mode.

Note: DMA is only possible on PCI based hardware. On none PCI based hardware, this
function is not available and will return with an error

Function call:
int32_t xChannelDMAState(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t* pulState)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd

uint32_t DMA State Commands:
Disable DMA mode
0 = CIFX_DMA_STATE_OFF
Enable DMA mode
1 = CIFX_DMA_STATE_ON
Get actual DMA state
2 = CIFX_DMA_STATE_GETSTATE

pulState uint32_t* Actual state returned

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 84/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27 Notification functions
Notification functions can be used for devices running in interrupt mode. These functions are
registering a callback for pre-defined events from the hardware.

The callback function is called if the corresponding event occurs on the device.

Note: Notification functions are only available for devices running in interrupt mode.

Available Notifications

Notification Definition Description

Packet transfer CIFX_NOTIFY_RX_MBX_FULL Receive mailbox full
(packet available)

CIFX_NOTIFY_TX_MBX_EMPTY Send mailbox is empty
(packet can be send)

I/O data transfer CIFX_NOTIFY_PD0_IN Input area 0 has been processed
(see below)

CIFX_NOTIFY_PD1_IN Input area 1 has been processed
(see below)

CIFX_NOTIFY_PD0_OUT Output area 0 has been processed
(see below)

CIFX_NOTIFY_PD1_OUT Output area 1 has been processed
(see below)

Synchronization CIFX_NOTIFY_SYNC Fieldbus synchronous event occurred

Communication Flag State CIFX_NOTIFY_COM_STATE Communication state of the communication
channel has changed

4.8.27.1 Packet transfer notifications

Packet transfer is used for asynchronous command/confirmation data (e. g. SDOs).

Packet data are handled via a mailbox system. In interrupt mode the actual state of the mailbox
system (send/receive mailbox) can be signaled by notifications (see above).

CIFX API (Application Programming Interface) 85/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27.2 I/O data transfer notifications

The result of the I/O handling and the corresponding notifications which can be signaled to the user
application are depending on the configured I/O data exchange mode. This also effect the handling
in the user application, when it is reasonable to call xChannelIORead() and xChannelIOWrite().

Note: "I/O Data Transfer" notifications depending on the so called “I/O Exchange Mode”
configured on the device. These modes are defining how notifications are created by
the device state changes. The callback functions are called if the driver detects a state
change in the device handshake flags. How the application processes the notification is
part of the application development and must correspond to the configured mode
settings of the device. Handshake modes are described in [1].

Handshake modes are defining which part (device/host) is the active part.

Following modes are known:

I/O Exchange mode Description

uncontrolled No data access synchronization between host and device. Both systems are running
independent of each other and data are exchanged without taking care about data
consistency.

Notification: NONE

buffered
host controlled
(default)

The host activates the data transfer between device and host.
Actual I/O data from the fieldbus system and from the host are always stored in the local I/O
buffers on the device.
If the host requests new input data (calling xChannelIORead()), the device will copy the
currently available input data from the local buffer to the DPM (PDx_IN area) and signals "data
updated" (1). The host can read the new input data with the next call to xChannelIORead().

If the host writes new output data to the DPM (PDx_OUT area) by calling xChannelIOWrite().
The device, will copy the data from the DPM to the local output buffer and signals "data
updated" (2) if the copy is done.

(1) Notification for the input data: CIFX_NOTIFY_PDx_IN
(2) Notification for the output data: CIFX_NOTIFY_PDx_OUT

buffered
device controlled

ATTENTION:
By default NOT supported from Hilscher Stacks

The device will start to copy the actual input data from the fieldbus system to the DPM
(PDx_IN area) and signals "input data updated" (1). The user has to call xChannelIORead() to
read the input data from the DPM. All further input data received by the fieldbus are stored in
the device local input buffer until the host reads the data again.

The device requests new output data from the host (2) and until the host has written new data,
output data are send from the local device buffer to the fieldbus system. If the host writes new
output data (calling xChannelIOWrite()) , the device copies the data to the local output buffer
and requests (2) new output data as soon as the copy of the data is done.

(1) Notification for the input data: CIFX_NOTIFY_PDx_IN
(2) Notification for the output data: CIFX_NOTIFY_PDx_OUT

CIFX API (Application Programming Interface) 86/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Data Exchange Mode - Buffered Host Controlled I/O:

Input

Output

Application DPM netX Device Fieldbus

Input Update
Done

1

2

Input

Output

Input

Output

Input

Output

3
Input

Output

Input

Output

xChannelIORead()

Buffered Host Controlled: I/O Read

Input

Output

Application DPM netX Device Fieldbus

Output Update
Done

1

2

Input

Output

Input

Output

Input

Output

3
Input

Output

Input

Output

xChannelIOWrite()

Buffered Host Controlled: I/O Write

Figure 3: Data Exchange Mode: Buffered Host Controlled I/O

I/O Read I/O Write

Step Description Step Description

1 Fieldbus protocol reads input data from the
fieldbus system and stores the data in the
internal "Input Buffer"

 1 Fieldbus protocol sends the output data stored
in the internal "Output Buffer" to the fieldbus
system

2 Application uses xChannelIORead() which
reads the actual data from the DPM (Dual-
Ported Memory) PD-IN area and signals the
card to update the PD-IN area.

 2 Application calls xChannelIOWrite() which write
the actual user data to the DPM (Dual-Ported
Memory) PD-OUT area and signals the card to
update the internal "Output Buffer".

3 The stack copies the actual data form the
internal "Input Buffer" (holding the latest input
data) to the DPM PD-IN area.

After the data copy, the protocol stack signals
"Input Update Done" which schedules a
CIFX_NOTIFY_PDx_IN notification.

 3 The stack copies the data from the DPM PB-
OUT area to the internal "Output Buffer".

After the data copy, the protocol stack signals
"Output Update Done" which schedules a
CIFX_NOTIFY_PDx_OUT notification.

Note: In these modes, the notifications just inform the application when the input data are
copied from the device local input buffer to the DPM and when the output data are
copied from the DPM to the device local output buffer. There is no synchronization with
any fieldbus data cycle.

CIFX API (Application Programming Interface) 87/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Data Exchange Mode - Buffered Device Controlled I/O

Input

Output

Application DPM netX Device Fieldbus

1

2

Input

Output

Input

Output

Input

Output

3
Input

Output

Input

Output

xChannelIORead()

Buffered Device Controlled: I/O Read

Input

Output

Application DPM netX Device Fieldbus

I/O waiting for
output data

1

2

Input

Output

Input

Output

Input

Output

3
Input

Output

Input

Output
xChannelIOWrite()

Buffered Device Controlled: I/O Write

I/O read data
available

Figure 4: Data Exchange Mode: Buffered Device Controlled I/O

I/O Read I/O Write

Step Description Step Description

1 Fieldbus protocol reads input data from the
fieldbus system and stores the data in the
internal "Input Buffer", copies the data to the
DPM (PDx_IN) area.

After writing the input data to the DPM
(PDx_IN), the device signals "I/O read data
available" scheduling a CIFX_NOTIFY_PDx_IN
notification.

 1 The device takes the output date from the DPM
(PDx_OUT area) and copies it to the device
local "Output Buffer".

After the copy the device requests new output
data by signaling a CIFX_NOTIFY_PDx_OUT
notification.

2 Any further data from a bus cycle will be stored
in the device local input buffer.

 2 The device sends the stored output with any
further bus cycle

3 If the host reads the input data (by calling
xChannelIORead()), the device is signaled
"Input data done" than the device is able to
update the input data again.

 3 If the host writes new output data to the DPM
(PDx_OUT) by calling xChannelIOWrite(). The
device is signaled "New output data
available".

Note: The application determines when read input or write output data. The notification
informs the application when read or write is possible. There is no synchronization with
any fieldbus data cycle.

CIFX API (Application Programming Interface) 88/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Determining the Configured "I/O Exchange Mode":

The configured I/O data exchange (host controlled/device controlled) can be read from the
communication channels "Common Status Block" (bPDInHskMode / (bPDOutHskMode). The block
can be read and evaluated by the user application using the xChannelCommonStatusBlock()
function.

The "Common Status Block" is described in the "netX Dual-Port Memory Interface DPM Manual".

Following data exchanges mode definitions are available:
/* Block definition: I/O Mode */
#define RCX_IO_MODE_DEFAULT 0x0000 /*!< I/O mode default, for compability reasons this
value is identical to 0x4 (buffered host controlled) */
#define RCX_IO_MODE_BUFF_DEV_CTRL 0x0002 /*!< I/O mode buffered device controlled */
#define RCX_IO_MODE_UNCONTROLLED 0x0003 /*!< I/O mode bus synchronous device controlled */
#define RCX_IO_MODE_BUFF_HST_CTRL 0x0004 /*!< I/O mode buffered host controlled */

Note: Possible data exchanges modes are fieldbus protocol specific and described in the
corresponding fieldbus "Protocol API" manual.

CIFX API (Application Programming Interface) 89/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27.3 Bus synchronization notifications

The notification functions offering a bus synchronization event if supported by the fieldbus protocol.

Note: "Synchronization" notifications" depending on the so called “Synchronization Mode”
configured on the device.

Sync Flag

Application DPM netX Device Fieldbus

1

2

xChannelSyncState()

Host Controlled Synchronization
Application DPM netX Device Fieldbus

Sync event
recogniced

1

2

Device Controlled Synchronization

Sync command
done

Start bus cycle

Sync Flag

Sync Flag

Sync Flag

Bus event

xChannelSyncState()

Figure 5: Bus synchronization notifications

Host Controlled Synchronization Device Controlled Synchronization

Step Description Step Description

1 The application starts to send a synchronization
command
xChannelSyncState(CIFX_SYNC_SIGNAL_CMD) to
the device.
Depending on the configuration the
synchronization command (e.g. start bus cycle) is
executed by the device.

 1 If the fieldbus protocol recognizes the
configured sync event, is signals a "Sync
event recognized" and scheduled a
CIFX_NOTIFY_SYNC notification.

2 The device signals "Sync command done", by
scheduling a CIFX_NOTIFY_SYNC notification if
the command is processed.

 2 Application has to call
xChannelSyncState(CIFX_SYNC_SIGNAL_ACK)
before a new bus event is signaled again.

Determining the Configured "Synchronization Mode":

The configured synchronization mode (host controlled/device controlled) can be read from the
communication channels "Common Status Block" (bSyncHskMode). The block can be read and
evaluated by the user application using the xChannelCommonStatusBlock() function.

The "Common Status Block" is described in the "netX Dual-Port Memory Interface DPM Manual".

Following synchronization mode definitions are available:
/* Block definition: Synchronization Mode */
#define RCX_SYNC_MODE_OFF 0x00
#define RCX_SYNC_MODE_DEV_CTRL 0x01
#define RCX_SYNC_MODE_HST_CTRL 0x02

Note: Possible synchronization modes are fieldbus protocol specific and described in the
corresponding fieldbus "Protocol API" manual

CIFX API (Application Programming Interface) 90/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27.4 PFN_NOTIFY_CALLBACK - Callback function definition

Note: The registered callback function will be invoked as soon as the callback is registered
and the corresponding event is valid. This could also happen while the user application
is still in the xChannelRegisterNotification() function call.

void NotificationCallback(uint32_t ulNotification,

uint32_t ulDataLen,
void* pvData
void* pvUser);

Arguments:

Argument Data type Description
ulNotification uint32_t Occurred event
ulDataLen uint32_t Length of additional data
pvData void* Additional Data (depends on ulNotification)
pvUser void* User parameter from registration

Possible Notification Events:

ulNotification Passed Data Description

CIFX_NOTIFY_RX_MBX_FULL Pointer to
CIFX_NOTIFY_RX_MBX_FULL_DATA_T
structure containing the total number of
packets waiting to be read from the device.

Signaled when receive mailbox
becomes full and a data packet is
available to read.

CIFX_NOTIFY_TX_MBX_EMPTY Pointer to
CIFX_NOTIFY_TX_MBX_EMPTY_DATA_T
structure containing the maximum amount
of packets which can be send to the device.

Send mailbox becomes empty and
a new packet can be send to the
device.

CIFX_NOTIFY_PD0_IN none Input area 0 has been processed

CIFX_NOTIFY_PD1_IN none Input area 1 has been processed

CIFX_NOTIFY_PD0_OUT none Output area 0 has been processed

CIFX_NOTIFY_PD1_OUT none Output area 1 has been processed

CIFX_NOTIFY_SYNC none Bus synchronization notification,
signals the SYNC event on the
fieldbus/device occurred.

CIFX_NOTIFY_COM Pointer to
CIFX_NOTIFY_COM_STATE_T structure
containing the actual state of the COM-flag

Communication flag notification.
Signals state changes of the
COM-flag (set or cleared).

CIFX API (Application Programming Interface) 91/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27.5 xChannelRegisterNotification

Register an event callback for channel events.

Depending on the event type additional information is passed in the callback. If a callback is
already registered for the given event, the function will return an error.

It is not possible to register multiple applications for the same notification.

Note: The registered callback function will be invoked as soon as the callback is registered
and the corresponding event is valid. This could also happen while the user application
is still in the xChannelRegisterNotification() function call.

Function call:
int32_t xChannelRegisterNotification(CIFXHANDLE hChannel,

uint32_t ulNotification,
PFN_NOTIFY_CALLBACK pfnCallback,
void* pvUser);

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulNotification uint32_t Possible Notification:

1 = CIFX_NOTIFY_RX_MBX_FULL
2 = CIFX_NOTIFY_TX_MBX_EMPTY
3 = CIFX_NOTIFY_PD0_IN
4 = CIFX_NOTIFY_PD1_IN
5 = CIFX_NOTIFY_PD0_OUT
6 = CIFX_NOTIFY_PD1_OUT
7 = CIFX_NOTIFY_SYNC
8 = CIFX_NOTIFY_COM

pfnCallback PFN_NOTIFY_CALLBACK Function to be called if event occurs
pvUser void* Parameter passed to callback

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 92/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.27.6 xChannelUnregisterNotification

Un-registers a previously registered notification event callback function for channel events.

Function call:
int32_t xChannelUnregisterNotification(CIFXHANDLE hChannel,

uint32_t ulNotification,);

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulNotification uint32_t Possible Notification:

1 = CIFX_NOTIFY_RX_MBX_FULL
2 = CIFX_NOTIFY_TX_MBX_EMPTY
3 = CIFX_NOTIFY_PD0_IN
4 = CIFX_NOTIFY_PD1_IN
5 = CIFX_NOTIFY_PD0_OUT
6 = CIFX_NOTIFY_PD1_OUT
7 = CIFX_NOTIFY_SYNC
8 = CIFX_NOTIFY_COM

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

CIFX API (Application Programming Interface) 93/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

4.8.28 Fieldbus synchronization handling
Certain fieldbus protocol stacks are offering so call synchronization functionalities to synchronize
devices connected to a fieldbus system.

Such synchronization functions are handled independent from of the cyclic I/O data transfer.

General Definition:

In general, synchronization handling distinguishes between device synchronization and host
synchronization operation. The difference between the two modes is the component (host / device)
which activates the synchronization and the response to the synchronization signal (event).

 Host Controlled Synchronization
In this mode, the host signals a synchronization to the hardware and the hardware has to
respond to this signal

 Device Controlled Synchronization
In this case, the device starts to signal a synchronization event and the host has to
acknowledge the reception of the synch signal.

Synchronization must be handled by the user application and can be done in polling mode (not
preferred) and interrupt mode of the hardware. In interrupt mode the drivers notification function is
used to handle synchronization event via a user callback function.

Synchronization Handling in Polling Mode:

In polling mode the xChannelSyncState() function is used to activate
(CIFX_SYNC_SIGNAL_CMD) or to acknowledge (CIFX_SYNC_ACKNOWLEDGE_CMD) a
synchronization signal, depending on the configured fieldbus synchronization mode (host
controlled / device controlled).

xChannelSyncState() can also be used to check (ulTimeout == 0) or to wait (ulTimeout != 0) for a
device synchronization signal. Or until a new host synchronization command can be initiated.

Synchronization Handling in Interrupt Mode:

In interrupt mode, the drivers register notification function is used to handle synchronization events.
A user application is able to register a callback function for synchronization events
(CIFX_SYNC_EVENT). The registered callback function will be executed if either the device is
signaling a synchronization event or if the device acknowledges a synchronization command
initiated by the host application.

 Device Synchronization Mode
The host has to register for a synchronization event and if the event occurs (callback function
is invoked) the host has to acknowledge the event using the
xChannelSyncState(...CIFX_SYNC_ACKNOWLEDGE_CMD...).

 Host Synchronization Mode
The host calls xChannelSyncState(...CIFX_SYNC_SIGNAL_CMD...) to signal a
synchronization. The registered callback function will be invoked if the device acknowledges
the command.

CIFX API (Application Programming Interface) 94/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Verifying Synchronization Misses:

xChannelSyncState() offers a pointer to an error counter buffer (pulErrorCount). This counter can
be used by the user application to determine the lost of a synchronization signals.

A changing error counter value between two subsequent xChannelSyncState() calls indicates a
lost signal. This means, in "Host Controlled Mode", the device was not quick enough to process the
previous command and in "Device Controlled Mode", the host has not acknowledged the
synchronization signal until the next synchronization signal was initiated.

Determining the Configured Synchronization Mode:

The configured synchronization mode (host controlled / device controlled) can be read from the
communication channels "Common Status Block" (bSyncHskMode). The block can be read and
evaluated by the user application using the xChannelCommonStatusBlock() function.

The "Common Status Block" is described in the "netX Dual-Port Memory Interface DPM Manual".

Currently the following synchronization modes are defined.
/* Block definition: Synchronization Mode */
#define RCX_SYNC_MODE_OFF 0x00
#define RCX_SYNC_MODE_DEV_CTRL 0x01
#define RCX_SYNC_MODE_HST_CTRL 0x02

Also the synchronization error counter (bErrorSyncCnt) and the synchronization source
(bSyncSource) can be evaluated from the "Common Status Block".

CIFX API (Application Programming Interface) 95/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Note: Fieldbus synchronization must be supported by the used fieldbus protocol stack.
Please consult the corresponding fieldbus "Protocol API" manual to make sure
synchronization is supported.

Note: Synchronization operation assumes a corresponding fieldbus configuration.

Note: Fieldbus synchronization is a time critical process and should be processed as fast as
possible. On Windows operating systems, responds times to synchronization events
are not guaranteed and can lead in serious jitter. Usually synchronization will be
handled in interrupt mode.

The xChannelSyncState() function can also be used in polling mode using a timeout
and the CIFX_SYNC_WAIT_CMD command, but this will not change the Windows
operating system respond timing issues.

Function call:
int32_t xChannelSyncState(CIFXHANDLE hChannel,

uint32_t ulCmd,
uint32_t ulTimeout
uint32_t* pulErrorCount)

Arguments:

Argument Data type Description
hChannel CIFXHANDLE Handle of the channel.
ulCmd uint32_t Synchronization Commands:

Signal sync to device
1 = CIFX_SYNC_SIGNAL_CMD
Acknowledge a sync that has been set by the device
2 = CIFX_SYNC_ACKNOWLEDGE_CMD
Wait for sync being signaled by device (Device Controlled), or
until host can signal new Sync State (Host Controlled)
3 = CIFX_SYNC_WAIT_CMD

ulTimeout uint32_t Timeout in ms to wait until bits can be signaled or have been
signaled by the device

pulErrorCount uint32_t* Returned Actual Sync Error counter

Return values:

CIFX_NO_ERROR if the function succeeds.

If the function fails, a non-zero error code is returned. For a list, see chapter Error codes on page
110. You can use the function xDriverGetErrorDescription() to get a description of this error.

Simple C-application example 96/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

5 Simple C-application example
The simple C application demonstrates the minimum functions which must be called to enable an
application to work with a CIFX/COMX/netX based hardware.

The example is named CIFXDEMO and the source, including a Microsoft Visual C++ 6.0 project,
can be found on the Hilscher system CDs.

5.1 The Main() function

/***/
/*! The main function
* \return 0 on success */
/***/
int main(int argc, char* argv[])
{
 CIFXHANDLE hDriver = NULL;
 int32_t lRet = CIFX_NO_ERROR;

 UNREFERENCED_PARAMETER(argc);
 UNREFERENCED_PARAMETER(argv);

 /* Open the cifX driver */
 lRet = xDriverOpen(&hDriver);

 if(CIFX_NO_ERROR != lRet)
 {
 printf("Error opening driver. lRet=0x%08X\r\n", lRet);
 } else
 {
 /* Example how to find a cifX/comX board */
 EnumBoardDemo(hDriver);

 /* Example how to communicate with the SYSTEM device of a board */
 SysdeviceDemo(hDriver, "cifX0");

 /* Example how to communicate with a communication channel on a board */
 ChannelDemo(hDriver, "cifX0", 0);

 /* Close the cifX driver */
 xDriverClose(hDriver);
 }
 return 0;
}

Simple C-application example 97/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

5.2 System device example

/***/
*! Function to demonstrate system device functionality (Packet Transfer)
* \return CIFX_NO_ERROR on success */
/***/
int32_t SysdeviceDemo(CIFXHANDLE hDriver, char* szBoard)
{
 int32_t lRet = CIFX_NO_ERROR;
 CIFXHANDLE hSys = NULL;

 printf("---------- System Device handling demo ----------\r\n");

 /* Driver/Toolkit successfully opened */
 lRet = xSysdeviceOpen(hDriver, szBoard, &hSys);

 if(CIFX_NO_ERROR != lRet)
 {
 printf("Error opening SystemDevice!\r\n");
 } else
 {
 SYSTEM_CHANNEL_SYSTEM_INFO_BLOCK tSysInfo = {0};
 uint32_t ulSendPktCount = 0;
 uint32_t ulRecvPktCount = 0;
 CIFX_PACKET tSendPkt = {0};
 CIFX_PACKET tRecvPkt = {0};

 /* System channel successfully opened, try to read the System Info Block */
 if(CIFX_NO_ERROR != (lRet = xSysdeviceInfo(hSys,
 CIFX_INFO_CMD_SYSTEM_INFO_BLOCK,
 sizeof(tSysInfo),
 &tSysInfo)))
 {
 printf("Error querying system information block\r\n");
 } else
 {
 printf("System Channel Info Block:\r\n");
 printf("DPM Size : %u\r\n", tSysInfo.ulDpmTotalSize);
 printf("Device Number : %u\r\n", tSysInfo.ulDeviceNumber);
 printf("Serial Number : %u\r\n", tSysInfo.ulSerialNumber);
 printf("Manufacturer : %u\r\n", tSysInfo.usManufacturer);
 printf("Production Date : %u\r\n", tSysInfo.usProductionDate);
 printf("Device Class : %u\r\n", tSysInfo.usDeviceClass);
 printf("HW Revision : %u\r\n", tSysInfo.bHwRevision);
 printf("HW Compatibility : %u\r\n", tSysInfo.bHwCompatibility);
 }

Simple C-application example 98/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 /* Do a simple Packet exchange via system channel */
 xSysdeviceGetMBXState(hSys, &ulRecvPktCount, &ulSendPktCount);
 printf("System Mailbox State: MaxSend = %u, Pending Receive = %u\r\n",
 ulSendPktCount, ulRecvPktCount);

 if(CIFX_NO_ERROR != (lRet = xSysdevicePutPacket(hSys,
 &tSendPkt,
 PACKET_WAIT_TIMEOUT)))
 {
 printf("Error sending packet to device!\r\n");
 } else
 {
 printf("Send Packet:\r\n");
 DumpPacket(&tSendPkt);

 xSysdeviceGetMBXState(hSys, &ulRecvPktCount, &ulSendPktCount);
 printf("System Mailbox State: MaxSend = %u, Pending Receive = %u\r\n",
 ulSendPktCount, ulRecvPktCount);

 if(CIFX_NO_ERROR != (lRet = xSysdeviceGetPacket(hSys,
 sizeof(tRecvPkt),
 &tRecvPkt,
 PACKET_WAIT_TIMEOUT)))
 {
 printf("Error getting packet from device!\r\n");
 } else
 {
 printf("Received Packet:\r\n");
 DumpPacket(&tRecvPkt);

 xSysdeviceGetMBXState(hSys, &ulRecvPktCount, &ulSendPktCount);
 printf("System Mailbox State: MaxSend = %u, Pending Receive = %u\r\n",
 ulSendPktCount, ulRecvPktCount);
 }
 }

 /* Close the system device */
 xSysdeviceClose(hSys);
 }

 printf(" State = 0x%08X\r\n", lRet);
 printf("--\r\n");

 return lRet;
}

Simple C-application example 99/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

5.3 Communication channel example

/***/
/*! Function to demonstrate communication channel functionality
* Packet Transfer and I/O Data exchange
* \return CIFX_NO_ERROR on success */
/***/
int32_t ChannelDemo(CIFXHANDLE hDriver, char* szBoard, uint32_t ulChannel)
{
 CIFXHANDLE hChannel = NULL;
 int32_t lRet = CIFX_NO_ERROR;

 printf("---------- Communication Channel demo ----------\r\n");

 lRet = xChannelOpen(hDriver, szBoard, ulChannel, &hChannel);

 if(CIFX_NO_ERROR != lRet)
 {
 printf("Error opening Channel!");
 } else
 {
 CHANNEL_INFORMATION tChannelInfo = {0};
 CIFX_PACKET tSendPkt = {0};
 CIFX_PACKET tRecvPkt = {0};
 /* Read and write I/O data (32Bytes). Output data will be incremented each
 cyle */
 uint8_t abSendData[32] = {0};
 uint8_t abRecvData[32] = {0};
 uint32_t ulCycle = 0;
 uint32_t ulState = 0;

 /* Channel successfully opened, so query basic information */
 if(CIFX_NO_ERROR != (lRet = xChannelInfo(hChannel,
 sizeof(CHANNEL_INFORMATION),
 &tChannelInfo)))
 {
 printf("Error querying system information block\r\n");
 } else
 {
 printf("Communication Channel Info:\r\n");
 printf("Device Number : %u\r\n", tChannelInfo.ulDeviceNumber);
 printf("Serial Number : %u\r\n", tChannelInfo.ulSerialNumber);
 printf("Firmware : %s\r\n", tChannelInfo.abFWName);
 printf("FW Version : %u.%u.%u build %u\r\n",
 tChannelInfo.usFWMajor,
 tChannelInfo.usFWMinor,
 tChannelInfo.usFWRevision,
 tChannelInfo.usFWBuild);
 printf("FW Date : %02u/%02u/%04u\r\n",
 tChannelInfo.bFWMonth,
 tChannelInfo.bFWDay,
 tChannelInfo.usFWYear);
 printf("Mailbox Size : %u\r\n", tChannelInfo.ulMailboxSize);
 }

Simple C-application example 100/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 /* Do a basic Packet Transfer */
 if(CIFX_NO_ERROR != (lRet = xChannelPutPacket(hChannel,
 &tSendPkt,
 PACKET_WAIT_TIMEOUT)))
 {
 printf("Error sending packet to device!\r\n");
 } else
 {
 printf("Send Packet:\r\n");
 DumpPacket(&tSendPkt);

 if(CIFX_NO_ERROR != (lRet = xChannelGetPacket(hChannel,
 sizeof(tRecvPkt),
 &tRecvPkt,
 PACKET_WAIT_TIMEOUT)))
 {
 printf("Error getting packet from device!\r\n");
 } else
 {
 printf("Received Packet:\r\n");
 DumpPacket(&tRecvPkt);
 }
 }

Simple C-application example 101/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 /* Do a basic IO data transfer */
 /* Set Host Ready to signal the filed bus an application is ready */
 lRet = xChannelHostState(hChannel,
 CIFX_HOST_STATE_READY,
 &ulState,
 HOSTSTATE_TIMEOUT);

 if(CIFX_NO_ERROR != lRet)
 {
 printf("Error setting host ready!\r\n");
 } else
 {
 /* Switch on the bus if it is not automatically running (see configuration
 options) */
 lRet = xChannelBusState(hChannel, CIFX_BUS_STATE_ON, &ulState, 0L);
 if(CIFX_NO_ERROR != lRet)
 {
 printf("Unable to start the filed bus!\r\n");
 } else
 {

 /* Do I/O Data exchange until a key is hit */
 while(!kbhit())
 {
 if(CIFX_NO_ERROR != (lRet = xChannelIORead(hChannel,
 0, 0, sizeof(abRecvData),
 abRecvData,
 IO_WAIT_TIMEOUT)))
 {
 printf("Error reading IO Data area!\r\n");
 break;
 } else
 {
 printf("IORead Data:");
 DumpData(abRecvData, sizeof(abRecvData));

 if(CIFX_NO_ERROR != (lRet = xChannelIOWrite(hChannel,
 0, 0, sizeof(abRecvData),
 abRecvData,
 IO_WAIT_TIMEOUT)))
 {
 printf("Error writing to IO Data area!\r\n");
 break;
 } else
 {
 printf("IOWrite Data:");
 DumpData(abSendData, sizeof(abSendData));

 /* Create new output data */
 memset(abSendData, ulCycle + 1, sizeof(abSendData));
 }
 }
 }
 }
 }

Simple C-application example 102/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

 /* Switch off the bus */
 xChannelBusState(hChannel, CIFX_BUS_STATE_OFF, &ulState, 0L);

 /* Set Host not ready to stop bus communication */
 xChannelHostState(hChannel, CIFX_HOST_STATE_NOT_READY,
 &ulState,
 HOSTSTATE_TIMEOUT);

 /* Close the communication channel */
 xChannelClose(hChannel);
 }

 if(CIFX_NO_ERROR != lRet)
 {
 char szBuffer[256] = {0};
 xDriverGetErrorDescription(lRet, szBuffer, sizeof(szBuffer));
 printf(" State = 0x%08X <%s>\r\n", lRet, szBuffer);
 } else
 {
 printf(" State = 0x%08X\r\n", lRet);
 }
 printf("--\r\n");

 return lRet;
}

Simple C-application example 103/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

5.4 Board and channel enumeration

/***/
/*! Function to demonstrate the board/channel enumeration
* \return CIFX_NO_ERROR on success */
/***/
void EnumBoardDemo(CIFXHANDLE hDriver)
{
 uint32_t ulBoard = 0;
 BOARD_INFORMATION tBoardInfo = {0};

 printf("---------- Board/Channel enumeration demo ----------\r\n");

 /* Iterate over all boards */
 while(CIFX_NO_ERROR == xDriverEnumBoards(hDriver, ulBoard, sizeof(tBoardInfo),
 &tBoardInfo))
 {
 uint32_t ulChannel = 0;
 CHANNEL_INFORMATION tChannelInfo = {0};

 printf("Found Board %.10s\r\n", tBoardInfo.abBoardName);
 if(strlen((char*)tBoardInfo.abBoardAlias) != 0)
 printf(" Alias : %.10s\r\n", tBoardInfo.abBoardAlias);
 printf(" DeviceNumber : %u\r\n", tBoardInfo.tSystemInfo.ulDeviceNumber);
 printf(" SerialNumber : %u\r\n", tBoardInfo.tSystemInfo.ulSerialNumber);
 printf(" Board ID : %u\r\n", tBoardInfo.ulBoardID);
 printf(" System Error : 0x%08X\r\n", tBoardInfo.ulSystemError);
 printf(" Channels : %u\r\n", tBoardInfo.ulChannelCnt);
 printf(" DPM Size : %u\r\n", tBoardInfo.ulDpmTotalSize);

 /* iterate over all channels on the current board */
 while(CIFX_NO_ERROR == xDriverEnumChannels(hDriver, ulBoard, ulChannel,
 sizeof(tChannelInfo), &tChannelInfo))
 {
 printf(" - Channel %u:\r\n", ulChannel);
 printf(" Firmware : %s\r\n", tChannelInfo.abFWName);
 printf(" Version : %u.%u.%u build %u\r\n",
 tChannelInfo.usFWMajor,
 tChannelInfo.usFWMinor,
 tChannelInfo.usFWBuild,
 tChannelInfo.usFWRevision);
 printf(" Date : %02u/%02u/%04u\r\n",
 tChannelInfo.bFWMonth,
 tChannelInfo.bFWDay,
 tChannelInfo.usFWYear);
 ++ulChannel;
 }
 ++ulBoard;
 }
 printf("--\r\n");
}

General protocol stack handling 104/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

6 General protocol stack handling
This chapter describes the general usage of the CIFX API in conjunction with a fieldbus protocol
stack.

6.1 Overview

Driver De-initialization

Channel Handling - Close Channel

Channel Handling - Activate BUS Communication

Channel Handling - Channel Open

Driver Initialization

xDriverOpen()

xDriverClose()

xChannelClose()

xChannelOpen()

xChannelHostState()
- CIFX_HOST_STATE_READY

xChannelConfigLock()
- CIFX_CONFIGURATION_UNLOCK

Stack Configuration

xChannelConfigLock()
- CIFX_CONFIGURATION_LOCK

xChannelBusState()
- CIFX_BUS_STATE_ON

Cyclic Data Transfer

xChannelBusState()
-CIFX_BUS_STATE_OFF

xChannelConfigLock()
- CIFX_CONFIGURATION_UNLOCK

xChannelHostState()
- CIFX_HOST_STATE_NOT_READY

Optional: Board and Channel Enumeration

xDriverEnumBoards()

xDriverEnumChannels()

Optional: Reading Board Information

xSysdeviceOpen()

xSysdeviceInfo()

xSysdeviceClose()

Optional: Open PLC Memory Pointer for PLC Functions

xChannelPLCMemoryPtr(...CIFX_MEM_PTR_OPEN...)

Optional: Close PLC Memory Pointer for PLC Functions

xChannelPLCMemoryPtr(..CIFX_MEM_PTR_CLOSE..)

General protocol stack handling 105/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Driver Initialization

 xDriverOpen() Open the Driver

Reading Driver Information (Optional)

 xDriverEnumBoards() Enumerate all available Boards

 xDriverEnumChannels() Enumerate channels on a given board

Reading Board Information (Optional)

 xSysdeviceOpen() Open the system device of a board

 xSysdeviceInfo() Read board information board via system channel

 xSysdeviceClose() Close the system channel

Channel Handling - Open Channel

 xChannelOpen() Open a communication channel

 Optional: Read the channel I/O memory pointers if the PLC functions xChannelPLC... are
used for I/O data transfer

xChannelPLCMemoryPtr(...CIFX_PLC_MEM_PTR_OPEN...)

 xChannelHostState(...CIFX_HOST_STATE_READY...) Signal Application is online

Wait until channel is READY if the timeout <> 0

Standard Timeout = 1000ms

 xChannelConfigLock(CIFX_CONFIGURATION_UNLOCK) Unlock the configuration

==> Stack Configuration

Channel Handling - Activate BUS Communication

 xChannelConfigLock(...CIFX_CONFIGURATION_LOCK...) Locking of the configuration

 xChannelBusState(...CIFX_BUS_STATE_ON...) Switch BUS to ON

Timeout <> 0, waits until BUS is ON

Standard Timeout: 5000ms

General protocol stack handling 106/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

==> Cyclic Data Transfer

Channel Handling - Close Channel

 xChannelBusState(...CIFX_BUS_STATE_OFF...) Switch off BUS Communication

Timeout <> 0, the function waits until the BUS is OFF

Standard Timeout: 5000ms

 xChannelConfigLock(...CIFX_CONFIGURATION_UNLOCK...) Unlock the Configuration

Unlock the configuration for further changes

 xChannelHostState(...CIFX_HOST_STATE_NOT_READY...) User Application Closed

Signal the protocol stack, no application is online

 xChannelClose() Close Channel

Driver De-initialization

 xDriverClose() Close the cifX Driver

General protocol stack handling 107/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

6.2 Protocol stack configuration
Stack Configuration

Slave Protocol StackMaster Protocol Stack

xChannelReset()

Send configuration packet
to the protocol stack

Send bus parameter to
the protocol stack

xChannelDownload()

xChannelReset()

via rcX Packet via Database (.NXD)

Send configuration packet
to the protocol stack

xChannelReset()

via rcX Packet

xChannelDownload()

xChannelReset()

via Database (.NXD)

Master Stack Configuration - via rcX Packet

 xChannelReset(...CIFX_CHANNELINIT...) Deactivate actual configuration

Maximum Timeout: 10000ms

 Send configuration

This is described in the protocol API manual

 Send Bus Parameter

This is described in the protocol API manual

Configuration is activated automatically after writing the BUS parameters

Master Stack Configuration - via Database

 xChannelDownload(...DOWNLOAD_CONFIGURATION...) Download a database

 xChannelReset(...CIFX_CHANNELINIT...) Activate actual configuration

Maximum Timeout: 10000ms

Slave Stack Configuration: via rcX Packets

 Send configuration data

 xChannelReset(...CIFX_CHANNELINIT...) Activate the configuration

Maximum Timeout: 10000ms

 Optional: Set watchdog time (RCX_SET_WATCHDOG_TIME_REQ) via xChannelPutPacket() /
xChannelGetPacket())

Standard Put/GetPacket() Timeout: 1000ms

General protocol stack handling 108/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Slave Stack Configuration - via Database

 xChannelDownload(...DOWNLOAD_CONFIGURATION...) Download a database

 xChannelReset(...CIFX_CHANNELINIT...) Activate actual configuration

Maximum Timeout: 10000ms

General protocol stack handling 109/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

6.3 Cyclic data exchange
Cyclic Data Exchange

I/O Read / Write PLC Functions

xChannelWatchDog(...CIFX_WATCHDOG_START...)

xChannelIORead()
xChannelIOWrite()

xChannelPLCWriteReady()

Write output data directly to the
cards DPM

xChannelWatchDog(...CIFX_WATCHDOG_STOP...)

xChannelPLCActivateWrite()

xChannelPLCReadReady()

Read input data directly from the
cards DPM

xChannelPLCActivateRead()

Cyclic end?

no

yes

Activate / Trigger Watchdog

 xChannelWatchdog (...CIFX_WATCHDOG_START...) Activate/Trigger Watchdog

 Note: xChannelWatchdog() must be called, with the parameter CIFX_WATCHDOG_START,
within the configured watchdog time.

Using I/O Read/Write Functions

 xChannelIORead() / xChannelIOWrite() Read / Write I/O Data

Using PLC Functions

 xChannelPLCIsWriteReady() / xChannelPLCIsReadReady() Use PLC Functions

Check if DPM access is allowed

 Read / Write data from/to the DPM I/O image areas

 xChannelPLCActivateRead() / xChannelPLCActivateWrite() Activate I/O Data Transfer

Activate data transfer (DPM is switched to hardware)

Deactivate Watchdog

 xChannelWatchdog (...CIFX_WATCHDOG_STOP...) Deactivate Watchdog

Error codes 110/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

7 Error codes
Error code Symbol / Description
0x00000000 CIFX_NO_ERROR

No error

0x800Axxxx General error codes

Error code Symbol / Description

0x800A0001 CIFX_INVALID_POINTER

Invalid pointer (e.g. NULL was passed to the function)

0x800A0002 CIFX_INVALID_BOARD

No board with the given name / index available

0x800A0003 CIFX_INVALID_CHANNEL

No channel with the given index available

0x800A0004 CIFX_INVALID_HANDLE

An invalid handle was passed to the function

0x800A0005 CIFX_INVALID_PARAMETER

Invalid parameter passed to the function

0x800A0006 CIFX_INVALID_COMMAND

Command parameter is invalid

0x800A0007 CIFX_INVALID_BUFFERSIZE

The supplied buffer does not match the expected size

0x800A0008 CIFX_INVALID_ACCESS_SIZE

Invalid access size (e.g. I/O area size is exceeded by given offset and length)

0x800A0009 CIFX_FUNCTION_FAILED

Generic function failure

0x800A000A CIFX_FILE_OPEN_FAILED

A file could not be opened

0x800A000B CIFX_FILE_SIZE_ZERO

File size is zero

0x800A000C CIFX_FILE_LOAD_INSUFF_MEM

Insufficient memory to load file a file to RAM

0x800A000E CIFX_FILE_READ_ERROR

Error reading file data

0x800A000F CIFX_FILE_TYPE_INVALID

The given file is invalid for the operation

0x800A0010 CIFX_FILE_NAME_INVALID

Invalid filename given

0x800A0011 CIFX_FUNCTION_NOT_AVAILABLE

Function is not available on the driver

0x800A0012 CIFX_BUFFER_TOO_SHORT

The passed buffer is too short to receive all of the requested data

Error codes 111/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

0x800Axxxx General error codes

Error code Symbol / Description

0x800A0013 CIFX_MEMORY_MAPPING_FAILED

Error mapping the dual port memory for later memory access

0x800A0014 CIFX_NO_MORE_ENTRIES

No more entries available. Returned by enumeration functions (e.g. xDriverEnumBoards(),
directories etc.)

0x800A0015 CIFX_CALLBACK_MODE_UNKNOWN

Unknown callback handling mode

0x800A0016 CIFX_CALLBACK_CREATE_EVENT_FAILED

Failed to create callback events

0x800A0017 CIFX_CALLBACK_CREATE_RECV_BUFFER

Failed to create callback receive buffer

0x800A0018 CIFX_CALLBACK_ALREADY_USED

Another application has already registered a callback for the given event

0x800A0019 CIFX_CALLBACK_NOT_REGISTERED

A callback was not registered before

0x800A001A CIFX_INTERRUPT_DISABLED

Device interrupt is disabled. The executed function expects an enabled hardware interrupt
(depending on the driver this must be done either by the device configuration or driver setup
program).

Table 18: General Error Codes

0x800Bxxxx Driver-related error codes

Error code Symbol / Description
0x800B0001 CIFX_DRV_NOT_INITIALIZED

Driver was not correctly initialized during startup or driver is already closed

0x800B0002 CIFX_DRV_INIT_STATE_ERROR

Initialization state error. Hardware does not show correct or expected states and information in the
DPM after a reset or boot start

0x800B0003 CIFX_DRV_READ_STATE_ERROR

Driver read state error

0x800B0004 CIFX_DRV_CMD_ACTIVE

The called function is in use by another program instance or application

0x800B0005 CIFX_DRV_DOWNLOAD_FAILED

General error during download (e.g. boot loader could not be downloaded or started)

0x800B0006 CIFX_DRV_WRONG_DRIVER_VERSION

Wrong driver version

0x800B0030 CIFX_DRV_DRIVER_NOT_LOADED

CIFX driver is not loaded / running. Failed to open or start the driver, returned by xDriverOpen()

0x800B0031 CIFX_DRV_INIT_ERROR

Failed to initialize the driver

0x800B0032 CIFX_DRV_CHANNEL_NOT_INITIALIZED

Channel not initialized (e.g. xChannelOpen() not called)

Error codes 112/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

0x800Bxxxx Driver-related error codes

Error code Symbol / Description
0x800B0033 CIFX_DRV_IO_CONTROL_FAILED

Function call into the driver failed
(e.g. used by the Windows API DLL to signal problems in IO-Control driver calls)

0x800B0034 CIFX_DRV_NOT_OPENED

Driver was not opened by calling xDriverOpen()
Table 19: Driver-related error codes

0x800Cxxxx Device / Communication-related error codes

Error code Symbol / Description
0x800C0010 CIFX_DEV_DPM_ACCESS_ERROR

Dual port memory not accessible (e.g. board not found, wrong dual port memory content)

0x800C0011 CIFX_DEV_NOT_READY

Device is not ready (NSF_READY or NCF_READY flag is not set)

The system device or communication channel is not working

0x800C0012 CIFX_DEV_NOT_RUNNING

Device is not running (NCF_RUNNING flag is not set). The communication channel is not configured

0x800C0013 CIFX_DEV_WATCHDOG_FAILED

Watchdog test failed

0x800C0015 CIFX_DEV_SYSERR

Error in handshake flags

0x800C0016 CIFX_DEV_MAILBOX_FULL

Send mailbox is full. The PutPacket() function was not able to write a packet to the device mailbox.
Either the mailbox state does not show empty or no more resources on the device available.

(NSF_SEND_MBX_ACK / HSF_SEND_MBX_CMD or NCF_SEND_MBX_ACK /
HCF_SEND_MBX_CMD flags in wrong state or mailbox counter usPackagesAccepted = 0)

0x800C0017 CIFX_DEV_PUT_TIMEOUT

Send packet timeout. The PutPacket() function was not able to write a packet to the device mailbox
and the wait time in PutPacket() has expired. Either the mailbox state does not show empty or no
more resources on the device available.

(NSF_SEND_MBX_ACK / HSF_SEND_MBX_CMD or NCF_SEND_MBX_ACK /
HCF_SEND_MBX_CMD flags in wrong state or mailbox counter usPackagesAccepted = 0)

0x800C0018 CIFX_DEV_GET_TIMEOUT

Receive packet timeout. GetPacket() function was not able to read a packet from the device and the
wait time in GetPacket() has expired. Either the mailbox state does not show a packet available or
the device has not sent a packet.

(NSF_RECV_MBX_CMD / HSF_RECV_MBX_ACK or NCF_RECV_MBX_CMD /
HCF_RECV_MBX_ACK flags in wrong state or mailbox counter usWaitingPackages = 0)

0x800C0019 CIFX_DEV_GET_NO_PACKET

No packet available. The GetPacket() function was called with timeout = 0 and the function was not
able to read a packet from the device. Either the mailbox state does not show a packet available or
the device has not sent a packet.
(NSF_RECV_MBX_CMD / HSF_RECV_MBX_ACK or NCF_RECV_MBX_CMD /
HCF_RECV_MBX_ACK flags in wrong state or mailbox counter usWaitingPackages = 0)

Error codes 113/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

0x800Cxxxx Device / Communication-related error codes

Error code Symbol / Description
0x800C001A CIFX_DEV_MAILBOX_TOO_SHORT

Mailbox is to short for the given packet. The packet send by PutPacket() does not fit into the mailbox.

0x800C0020 CIFX_DEV_RESET_TIMEOUT

Reset command timeout. The device was not reaching READY state, in the given reset timeout, after
the application has initiated a reset (RCX_COMM_COS_READY flag not set).

0x800C0021 CIFX_DEV_NO_COM_FLAG

Communication flag not set. The fieldbus protocol stack has no communication to the fieldbus
devices. Either the cable is disconnected or no other device is connected to the wire
(NCF_COMMUNICATING flag not set).

0x800C0022 CIFX_DEV_EXCHANGE_FAILED

I/O data exchange failed. Function xChannelIORead() or xChannelIOWrite() fails, because the
device does not allow to access the I/O data image.
(NCF_PDIN / NCF_PDOUT flags are not in the state allowing access to the I/O process data image)

0x800C0023 CIFX_DEV_EXCHANGE_TIMEOUT

I/O data exchange timeout. The given timeout in xChannelIORead() / xChannelIOWrite() expires
while the function is waiting to get access to the process data image.
(NCF_PDIN / NCF_PDOUT flags are not in the state allowing access to the I/O process data image)

0x800C0024 CIFX_DEV_COM_MODE_UNKNOWN

Unknown I/O data exchange mode (mode is not within 0..5)

0x800C0025 CIFX_DEV_FUNCTION_FAILED

Device function failed

0x800C0026 CIFX_DEV_DPMSIZE_MISMATCH

DPM size differs from configuration, The firmware signals a communication channel size which does
not fit into the maximum DPM size defined by the hardware or defined by the user.

0x800C0027 CIFX_DEV_STATE_MODE_UNKNOWN

Unknown state mode

0x800C0028 CIFX_DEV_HW_PORT_IS_USED

Device is accessed either by another application or another instance.
- Driver / device can't be unloaded, open connection to the system device or a communication
channels still active
- xChannelOpen() can't be executed because it is currently used by another application

0x800C0029 CIFX_DEV_CONFIG_LOCK_TIMEOUT

Failed lock the communication channels configuration within the given time. xChannelConfigLock()
wait time expired (RCX_COMM_COS_CONFIG_LOCKED flag not set).

0x800C002A CIFX_DEV_CONFIG_UNLOCK_TIMEOUT

Failed to unlock the communication channel configuration within the given time.
xChannelConfigLock() wait time expired (RCX_COMM_COS_CONFIG_LOCKED flag not cleared)

0x800C002B CIFX_DEV_HOST_STATE_SET_TIMEOUT

Wait time expires during xChannelHostState() without reaching CIFX_HOST_STATE_READY.

(The function was not able to set the RCX_APP_COS_APP_READY flag or the device has not
acknowledged the new status in time)

0x800C002C CIFX_DEV_HOST_STATE_CLEAR_TIMEOUT

Wait time expires during xChannelHostState() without reaching CIFX_HOST_STATE_NOT_READY

(The function was not able to clear the RCX_APP_COS_APP_READY flag or the device has not
acknowledged the new status in time)

Error codes 114/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

0x800Cxxxx Device / Communication-related error codes

Error code Symbol / Description
0x800C002D CIFX_DEV_INITIALIZATION_TIMEOUT

Timeout during device / channel initialization

0x800C002E CIFX_DEV_BUS_STATE_ON_TIMEOUT

Wait time expires during xChannelBusState() without reaching CIFX_BUS_STATE_ON
(RCX_COMM_COS_BUS_ON flag not set)

Using a timeout, the function will activate fieldbus communication and waits until communication to
another fieldbus device is available (NCF_COMMUNICATION flag is set)

0x800C002F CIFX_DEV_BUS_STATE_OFF_TIMEOUT

Wait time expires during xChannelBusState() without reaching CIFX_BUS_STATE_OFF.
(The function was not able to clear the RCX_APP_COS_BUS_ON flag or the device has not
acknowledged the new status in time and still signals bus communication is active by
RCX_COM_COS_BUS_ON).

0x800C0040 CIFX_DEV_MODULE_ALREADY_RUNNING

Firmware module (NXO) download and start failed because a module is already running

0x800C0041 CIFX_DEV_MODULE_ALREADY_EXISTS

Firmware module (NXO) download was skipped because the module already exists

0x800C0050 CIFX_DEV_DMA_INSUFF_BUFFER_COUNT

Number of configured DMA buffers insufficient (at least 8 buffers are expected)
Or xChannelDMAState() is used without previously configured DMA buffers.

0x800C0051 CIFX_DEV_DMA_BUFFER_TOO_SMALL

DMA buffers size too small (min size 256Byte)

0x800C0052 CIFX_DEV_DMA_BUFFER_TOO_BIG

DMA buffers size too big (max size 63,75KByte)

0x800C0053 CIFX_DEV_DMA_BUFFER_NOT_ALIGNED

DMA buffer alignment failed (must be 256Byte)

0x800C0054 CIFX_DEV_DMA_HANSHAKEMODE_NOT_SUPPORTED

I/O process data exchange mode "uncontrolled" not allowed when DMA transfer is activated

0x800C0055 CIFX_DEV_DMA_IO_AREA_NOT_SUPPORTED

I/O process data area index in DMA mode not supported (only area 0 possible)

0x800C0056 CIFX_DEV_DMA_STATE_ON_TIMEOUT

Failed to set DMA transfer to "ON" within the given wait time in xChannelDMAState().

(The device has not acknowledged the new status or not set the RCX_COM_COS_DMA flag)

0x800C0057 CIFX_DEV_DMA_STATE_OFF_TIMEOUT

Failed to set DMA transfer to "OFF" within the given wait time in xChannelDMAState().
(The device has not acknowledged the new status or not cleared the RCX_COM_COS_DMA flag)

0x800C0058 CIFX_DEV_SYNC_STATE_INVALID_MODE

Device is in invalid mode for the command initiated by xChannelSyncState().
The mode must be either "SYNC Host Controlled" (RCX_SYNC_MODE_HST_CTRL) or "SYNC
Device Controlled" (RCX_SYNC_MODE_DEV_CTRL)

0x800C0059 CIFX_DEV_SYNC_STATE_TIMEOUT

Wait time expired during xChannelSyncState(..,CIFX_SYNC_WAIT_CMD,).
Device does not signal the expected synchronization handshake flag state

Table 20: Device / Communication-related error codes

Appendix 115/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

8 Appendix
8.1 List of tables
Table 1: List of revisions.. 4
Table 2: Terms, abbreviations and definitions ... 5
Table 3: References to documents ... 5
Table 4: List of API functions – Driver functions .. 8
Table 5: List of API functions – System Device functions.. 8
Table 6: List of API functions – Communication Channel functions .. 10
Table 7: Driver functions ... 14
Table 8: System Device functions ... 15
Table 9: Communication Channel functions .. 17
Table 10: Driver information structure ... 18
Table 11: Board information structure ... 18
Table 12: System channel information .. 19
Table 13: System channel info block ... 19
Table 14: System Channel - Channel Info Block ... 20
Table 15: System channel control block .. 20
Table 16: System channel status block ... 20
Table 17: Channel information structure ... 21
Table 18: General Error Codes ... 111
Table 19: Driver-related error codes ... 112
Table 20: Device / Communication-related error codes .. 114

8.2 List of figures
Figure 1: CIFX API components .. 6
Figure 2: Component Overview for netX applications ... 7
Figure 3: Data Exchange Mode: Buffered Host Controlled I/O .. 86
Figure 4: Data Exchange Mode: Buffered Device Controlled I/O .. 87
Figure 5: Bus synchronization notifications ... 89

Appendix 116/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

8.3 Legal notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
Illustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Appendix 117/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

 Flight control systems in aviation and aerospace;

 Nuclear fission processes in nuclear power plants;

 Medical devices used for life support and

 Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

 For military purposes or in weaponry;

 For designing, engineering, maintaining or operating nuclear systems;

 In flight safety systems, aviation and flight telecommunications systems;

 In life-support systems;

 In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Appendix 118/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft für Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Appendix 119/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft für Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft für
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

Appendix 120/120

CIFX API | Programming reference guide
DOC121201PR07EN | Revision 7 | English | 2019-08 | Released | Public © Hilscher, 2012-2019

8.4 Contacts

Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Terms, abbreviations and definitions
	1.4 References to documents

	2 Application note
	2.1 Component overview for host applications
	2.2 Component overview for netX applications
	2.3 Availability of API functions

	3 API basics
	3.1 DPM layout, devices and channels
	3.2 Basic fieldbus data handling
	3.3 Fieldbus-specific information and functions

	4 CIFX API (Application Programming Interface)
	4.1 API header files
	4.2 Driver functions
	4.3 System Device functions
	4.4 Communication Channel functions
	4.5 Structure definitions
	4.5.1 Driver information
	4.5.2 Board information
	4.5.3 System channel information
	4.5.4 Communication channel information

	4.6 Driver related functions
	4.6.1 xDriverOpen
	4.6.2 xDriverClose
	4.6.3 xDriverGetInformation
	4.6.4 xDriverGetErrorDescription
	4.6.5 xDriverEnumBoards
	4.6.6 xDriverEnumChannels
	4.6.7 xDriverRestartDevice
	4.6.8 xDriverMemoryPointer

	4.7 System device specific functions
	4.7.1 xSysdeviceOpen
	4.7.2 xSysdeviceClose
	4.7.3 xSysdeviceInfo
	4.7.4 xSysdeviceReset
	4.7.5 xSysdeviceResetEx
	4.7.6 xSysdeviceBootstart
	4.7.7 xSysdeviceGetMBXState
	4.7.8 xSysdevicePutPacket
	4.7.9 xSysdeviceGetPacket
	4.7.10 xSysdeviceDownload
	4.7.11 xSysdeviceFindFirstFile
	4.7.12 xSysdeviceFindNextFile
	4.7.13 xSysdeviceUpload
	4.7.14 xSysdeviceExtendedMemory

	4.8 Channel-specific functions
	4.8.1 xChannelOpen
	4.8.2 xChannelClose
	4.8.3 xChannelDownload
	4.8.4 xChannelFindFirstFile
	4.8.5 xChannelFindNextFile
	4.8.6 xChannelUpload
	4.8.7 xChannelGetMBXState
	4.8.8 xChannelPutPacket
	4.8.9 xChannelGetPacket
	4.8.10 xChannelGetSendPacket
	4.8.11 xChannelReset
	4.8.12 xChannelInfo
	4.8.13 xChannelIOInfo
	4.8.14 xChannelWatchdog
	4.8.15 xChannelConfigLock
	4.8.16 xChannelHostState
	4.8.17 xChannelBusState
	4.8.18 xChannelControlBlock
	4.8.19 xChannelCommonStatusBlock
	4.8.20 xChannelExtendedStatusBlock
	4.8.21 xChannelUserBlock
	4.8.22 xChannelIORead
	4.8.23 xChannelIOWrite
	4.8.24 xChannelIOReadSendData
	4.8.25 PLC I/O image functions
	4.8.25.1 xChannelPLCMemoryPtr
	4.8.25.2 xChannelPLCActivateRead
	4.8.25.3 xChannelPLCActivateWrite
	4.8.25.4 xChannelPLCIsReadReady
	4.8.25.5 xChannelPLCIsWriteReady

	4.8.26 DMA functions
	4.8.26.1 xChannelDMAState

	4.8.27 Notification functions
	4.8.27.1 Packet transfer notifications
	4.8.27.2 I/O data transfer notifications
	4.8.27.3 Bus synchronization notifications
	4.8.27.4 PFN_NOTIFY_CALLBACK - Callback function definition
	4.8.27.5 xChannelRegisterNotification
	4.8.27.6 xChannelUnregisterNotification

	4.8.28 Fieldbus synchronization handling

	5 Simple C-application example
	5.1 The Main() function
	5.2 System device example
	5.3 Communication channel example
	5.4 Board and channel enumeration

	6 General protocol stack handling
	6.1 Overview
	6.2 Protocol stack configuration
	6.3 Cyclic data exchange

	7 Error codes
	8 Appendix
	8.1 List of tables
	8.2 List of figures
	8.3 Legal notes
	8.4 Contacts

