>
hilscher

COMPETENCE IN
COMMUNICATION

Toolkit Manual
cifX/netX Toolkit

DPM
V2.1

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

Introduction 2/117

Table of contents

1 T o X [0 To3 o 1 o SO 4
R 1Y o o T 01 B 1 10 (o T 1] 0 0= o | RSO 4

2 I8 1 o) =1 13 o] g S 5

1.3 Terms, abbreviations and definitioNSccooiiiiiiiie e 5

1.4 References t0 dOCUMENESuuiiiiiie et ie e e e e e s st e e e e s e st r e e e e e s s et eeeeeesssnnsnteeeeeeeessnnnrnneneeens 6

T T 10 [TP PPPPRRPR 7

T L= TS 1 T 1o] S 7

2 HOW t0 POrt the CifX TOOIKIt.....cci i e e s s e e e e e s st e e e e e e e e snnrnneeeees 8
0 R € 1= 1= =TI o Yo =Y U 9

2.1.1 Step-by-Step Guide - What Nneeds t0 De dONe............uuiiiiiiiii e 10

2.1.2 Additional Toolkit FUNCtIONS aNd OPLIONSceiiiiiiiiiiiii et e e et e e e e e e aneeaeeaeaeean 12

2.1.3 Creating an OWN DEVICE DIIVETuuuiiiiiiiiiiiii e ettt e e e st e e e e e s st e e e e e e s st rreeeaeessasbeaaeaeaesan 14

2.2 Creating an Application using the Toolkit Low-Level DPM FUNCLiONSccccceevvviivieeneee e 15

3 HOW t0 ACCESS SErial DPM VIa SPlcoiiiiiiiiiiiiiiiiiiiieieiiieeeeeeeeseeeeeeeeeeseeeeessesseseeseessseaeseseeeeeaererereeeeeeeees 17
3.1 Serial DPM INterface FUNCLIONScoiiiiiiiiiiii e saaanenansnnnnnsnnnnnnes 18

3.1.1 Serial DPM Interface INItIaliZatiON.............eveeiiiieiiiiiieiieieeiieeeeeeeeeeeeeeeeeeeeeeseeseseessesesessessssssesessssrererennns 18

3.1.2 SPI ACCESS FUNCHOMNS.uiiiiiieeiiiiiie ettt e e ettt e e e e e st e e e e e s et a e e e e e e s ssatbereeeaeessansbraaeeaeesan 19

G - L 1 1] 0] PR 22

4 The CifX/INEetX TOOIKIt ..., 23
4.1 Directory Structure and CONEENT...........coiii ittt e e e e e e e e s et e e e e e e e e s e asbebeeeeaaeeaaan 23

O R o7 9 G I To 1141 A 5 5 PPN 23

o1 1 7 o o | (1 S RO PRPRO 23

A.1.3 DOCUMENEALION L.uuututuurrusurtsrsressssrsrerssessssssrsssssrsrersrsssssrsssssrsssrsssrnns 24

4.1.4 EXaMPIES\CITXTOOIKITc.oiiiiiiiiee et e e e e e e e s et e e e e e s eata b e e e e e e e easntaaeeas 24

4.1.5 Examples\CifXTKItHWERFUNCLHONSoviiiiiiiiiiiiiiiee ettt e e r e e e e e e e nnraeee s 24

A T\ - - T (1T [P RSRR 25

T T = T TN = g [=T TS T U1 o] oo o SRR 25

N Y e o111 o] o o o OSSR 26

4.5 FLASH-based vS RAM-DasSed AEVICES.........cccuviiiiiei et r e e ee e e e e 27

4.6 Loadable FIrMWArE FIlES ... iiiiiiiie et e e e e e e s s s e e e e e e s s sanae e e e e e e e snnnserneneeeeesanns 28

4.6.1 |Initialization process using @ MonolithiC fiIMWAIE..............eviiiiiiiiie e 29

4.6.2 Initialization process using Loadable Firmware Modules............cccuvieiieiiiiiiiiieiee et 31

o A 1) (=1 8o g =T | 11 o O SRR 33

4.8 DMA handling for I/O data tranSTerSccoiiiiieiiii e e e ee e e e e 34

4.9 Extended parameter check of TOOIKit fUNCHONScoooviiiiiiiec e 36

g O T = Tt 1] = =T~ 11 o SRR 37

4.11 Custom hardware access interface / Serial DPMcccci 39
4.11.1 Defining and adding custom acCess fUNCIONS..........ooiiiiiiiiiii e 41

A b 11 1]][T OSSP 43

4.11.3 Serial DPM ACCESS VI SPciiiiiiiiiiiiii ettt s et e e e e st e e e e s e e bt e et e e e e eannntanees 44

5 ToolKit iNitialiZation @NA USAQE ...cciii ittt e e e et e e e e e e s e snbbeeeaaaeeaaans 45
5.1 DEVICEINSTANCE SIUCTUIE. nssassnsnssssssssnsssnnnsnsnnnnnnnnnnns 46

5.1.1 User definable data in the DEVICEINSTANCE StrUCIUIEuuviiiieiiiiiiiiiee e eciiieeee e eeveaeea e 46

5.1.2 Toolkit internal data in the DEVICEINSTANCE StrUCTUIEuvviiiieee ittt 48

5.2 CHANNELINSTANCE SUUCTUIEuuui e sssasasssssssssnsnsnsnsnsnnnsnnnnnnnnns 49

6 TOOIKIt FUNCLIONS ..o, 51
6.1 General TOOIKit FUNCHONScooiiiiiiiiii e e e s e e e e e e e e e e e e e s snnbane e e e e e e annnnneens 52

L0 I o717 I 1 131 S PSP PPPRRP 52

L I o1 I 1 1YL PR UP PP 53

6.1.3 CIEXTKILAGUDEVICE. ...ttt e et e e e e e st e e e e e s et b e e e e e e e s saatbeseeeaeessassseaaeeaeesan 54

6.1.4 CIfXTKItREMOVEDEVICEueiiiie ittt ettt e e et e e e e e st e e e e e s st b e e e e e e e s sastbrseeeaeessasstaeeeaaesan 56

6.1.5 CIEXTKIECYCHCTIMEN ..ttt e e e ettt et e e e e s e a b et e e e e e e e sanbaeseeaaeeeaannneneeaaaean 57

L0 L T o717 QI S8 ST L = 1o | PPNt 58

L0 A o711 G I S0 1S = g o {1 PPt 59

(ST © 1S J72Y o1 1 - Vo] 170 o 1 60

L0700 R 1oV 7= 1142 (o o PP 62

(S22 Y 1T o g To] VA o o 1= = 1 o] L RO 63

(oI B 10T o) o 1=T = L1 (o] 1= U SUP PP 67

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Introduction

10

6.2.4 Event handling

(SIS 1T o =V To 1T Vo O EUOPPRPP
6.2.6 Synchronization / LOCKING / TiMINGcceiiiiiiiiiiee ettt e e e st e e e s e e e e e s ssianr e e e e e e s ssnsneneeeeeesan 74
B.2.7 POl TOULINES. ...eeiiitiie ettt ettt ettt et e e ekt e skttt e oo h bt e e ea kbt e e abte e e e sb b e e e e anbb e e e nnnbeeesnbbeee s 79
6.2.8 INTEITUPL FOULINES ..oeiiiiiiiiiiiiii e e sttt e e e et e e e e et e e e e e e st e e e e e e s satbaeeeeaeessstbebeeeaeessansneneeaeeenan 81
6.2.9 Memory mapping FUNCHIONSc..uiiiii ettt e e e et e e e e e e e annnnaeeaea e s 82
6.3 USER Implemented fUNCHIONSoiiiiiiii et e e e 84
6.3.1 USER_GetFirmwareFilECOUNLcoii ittt e e e e e e e e e e e e e annneneeaaa e s 85
6.3.2 USER_GEtFIMMWAIERIIEoi ittt e e e e et e e e e e e e annnnaeeaaa e s 85
6.3.3 USER_GetConfiguratioNFIlECOUNTcoiieiiiii ettt e et e e e e e e anneaeeaaa e as 86
6.3.4 USER_GetConfigUratiONFilE...........uiiiiiei ittt e e e e st e e e e e s s etbraeeeaee s 86
6.3.5 USER_GetWarmstartParamMeterS..........uuuuuuiiiiiiiiiiiiiiiiiieiieiteeeeeeeeeeeeeeeseeesesseeeeseeeeserseerereeeeerer... 87
6.3.6 USER_GEIANASNAIMEuiiiiiiieiiiiiiiiti ettt e e e ettt e e e e e s st e e e e e e st b e e e e e e e e s sastbeseeeaeessasstaeeeaaesan 88
6.3.7 USER_GetBOOOAUEIFIIE.cciiiiiiiiii ettt e e e e st e e e e e s e etbaaeeaeeeean 88
6.3.8 USER_GetINterruUptENGADIE ..ottt e e e e e e e s e e e e e s st e e e e e an 89
6.3.9 USER _GEIOSHII ...ttt ettt e e ettt e e e e e et e e e e e e e aanbare e e e e e e e eannnnneeaaaean 89
6.3.00 USER _TIACE ...ettttiiieiiiiiiiiiiiiiittettee et ee et ettt ettt ettt et ettt e et e eeee e et ettt eeee s ee e e ee et e e e e e e e e e e eeseseseseseeeeeesensnsnnnnennnnnnns 90
6.3.11 USER_GEIDMAMOUEeeeeiiieei ittt e ettt ettt e e e e e ettt e e e e e e e ntbee e e e e e e e aanbbeseeaaeeeaannnnnneaaaean 91
Additional INFOIMEALION Lo st s st e e st e e s anb e e e s anbbeeeenneee 92
7.1 Special INterrupt NANAINGooo e e e e e e e e e e s e aneeees 92
7.1.1 LocKiNg DSR AQAINSE ISRcciiiiiiiiiiii ettt e e e e et e e e e e e e eanbae e e e e e e e e eannnnneeaaaean 92
7.1.2 Deferred enabling Of INTEITUPLSeiiiiiiiieie et e e e e et e e e e e e e nneneeaeaeean 94
7.2 PCldevice INfOrMAaLtIoN ... e e s s s aasaaassaassssensnsnsssnsnsnnnnnnnnns 95
7.2.1 PCI/PCle Vendor and DEVICE IDS......ccouai ittt ettt e e e e et e e e e e e e e annneneeaaaeean 95
7.2.2 BAR (Base Address Register) definitioN............ccciiiiiiiiiiiee e 96
7.2.3 Determine the size Of PCl MEMOIY rESOUICEScciuuriiiiieeeeiiiiititeee e e s ssibaeee e e e e s ssiarreeaaeessssaeaeeeeaesn 97
7.2.4 Enable interrupt on PCl-based hardwWareooocuuiiiiiiiiiiiiiiiee e 98
Toolkit low-level hardware access fUNCLIONS ..., 99
S R ¥ g Tex 1T g e Y= Vo TP 100
8.2 Using the Toolkit hardware FUNCHONSc.uuuiiirie i e e e e re e e e e e 101
RS T 1 4T o] (T @R=T o] o 1= o] o SO PRSIR 102
8.4 The Toolkit C example apPliCALIONcoii i e e e e s e e e e e e e anns 105
8.5 Toolkit hardware functions iN INEFTUPE MOTEcooiiiiiiiiiiii e 107
ST o] g oo Yo 1= PP PRRRPP 108
Y o 0 1= 0 o 1 QP 112
O A I o = 1 o (=P 112
O S o) 1o [0 £ PP PP RPPTT 112
0T T =Y - | T (SRS 113
0 0 R o | =T €= P 117

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Introduction 4/117

1 Introduction

1.1 About this document

The cifX/netX Toolkit consists of C-source and header files allowing abstract access to the dual-
port memory (DPM) defined by Hilscher for cifX and comX devices and netX based components.

It contains the user interface functions (CIFX API) as well as generic access functions needed to
handle the Hilscher DPM.

Implementation CIFX/netX C-Toolkit
Toolkit API CIFX - API
W
\ A
Device Handling API Implementation

K CIFX / netX Hardware Access Functions
(DEV_xxxxx - Low-Level Device Functions)

A
A 4

Physical DPM or
serial DPM via SPI

CIFX [netX Dual Port Memory

Figure 1: Toolkit overview

All Hilscher CIFX/COMX device drivers are based on the toolkit and the structure of the toolkit is
designed to be portable and adjustable to different operating system. Therefore all operating
depended functions (OS_ functions) and the so called USER functions (USER__ functions), needed
for the device start-up, download and configuration handling are placed in separate source
modules.

Furthermore, the toolkit hardware access functions (DEV_ functions) can be used to create small
Microcontroller based applications.

To adapt the toolkit, only the separate modules (described in OS Abstraction on page 60 and
USER implemented functions on page 84) must be implemented according to the used operating
system.

Note: The CIFX API is described in the CIFX API - Application Programming Interface
manual.

This manual describes the implementation of the cifX/netX Toolkit and the porting to own operating
systems.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Introduction 5/117
1.2 List of revisions
Rev | Date Name |Chapter |Revision
10 2018-08-29 | RMA Toolkit V1.5
41.1 Section cifX Toolkit CD added.
4.5 Section FLASH-based vs RAM-based devices added.
5.1.1 Section User definable data in the DEVICEINSTANCE structure:
eDeviceType description added.
6.1.3 Section cifXTKitAddDevice: description of ptDevinst argument fixed.
6.2.7 Section PCI routines: note to store / restore the complete
PCI_COMMON_CONFIG structure added.
11 2019-04-26 | ALM/ Toolkit V2.1
LCO 3.1.2 Sections OS_Spilnit, OS_SpiLock, and OS_SpiUnlock added.
45 Note about firmware update handling in case of netX90/netX4000 added.
4.6 File extensions NXI, NAI added.
46.1.2 Note about firmware update handling for netX90/netX4000 added.
7.2 Note about netX4000 PCle devices added.
7.2.1 CIFX4000 PCI information/IDs added.
9 Section Error codes updated.

Table 1: List of revisions

1.3 Terms, abbreviations and definitions

Term Description
cifxX Communication Interface based on netX
comX Communication Module based on netX
DPM Dual-Port Memory
Physical interface to all communication board (DPM is also used for PROFIBUS-DP Master).
PCI Peripheral Component Interconnect
API Application Programming Interface
NXF File extension of a Hilscher netX Firmware or Base OS Firmware
NXO File Extension of a Hilscher netX Firmware module
SDO Service Data Object
PDO Process Data Object

Table 2: Terms, abbreviations and definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data format.

This corresponds to the convention of the Microsoft C Compiler.

All IP addresses in this document have host byte order.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Introduction 6/117

1.4 References to documents

This document based on the following documents and specifications:

[1]

[2]

3]

[4]

[5]

[6]

Hilscher Gesellschaft fir Systemautomation mbH: CIFX API - Application Programming
Interface, Revision 6, english, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Dual-Port Memory Interface Manual,
Revision 15, english, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services (netX 10/50/51/52/100/500), Revision 3, english, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services (hetX 90/4000/4100), Revision 2, english, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Driver Manual, cifX Device Driver,
Windows 2000/XP/Vista/7 V1.1.x.x. Revision 23, english, 2016.

Hilscher Gesellschaft fir Systemautomation mbH: Getting Started Guide, Serial Dual-Port
Memory Interface with netX, Revision 6, english, 2018.

Table 3: References to documents

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Introduction 7/117

1.5 Features

Support of PCI / ISA and DPM based connections to the Hilscher DPM
Support of memory and FLASH based devices

netX100/500, netX50, netX51/52 Bootstrap support

Basic interrupt functions included

Event handling for I/O and packet transfer functions

Support of Loadable Firmware Modules (NXO files) consisting of a Base OS Module and
Loadable Protocol Stack Modules

64 Bit support
Options:
Little Endian / Big Endian support (selectable via toolkit definition)
DMA support for 1/0O data transfer (selectable via a toolkit definition)
Extended Parameter Check of Toolkit Functions (selectable via a toolkit definition)
Device time setting during start-up

Custom Hardware Access Interface (e.g. DPM via SPI, selectable via a toolkit
definition)

1.6 Restrictions

The following restrictions apply when using the cifX/netX Toolkit:
Several functions must be implemented by the user, before being able to use the toolkit

Basic Interrupt support is included. Only the start-up phase is done in polling mode. The
interrupts will be activated after the device has been fully configured

Hardware recognition like PCI scanning routines are not included

On Big Endian CPUs, the user application will need to convert communication channel and
send/receive packet content to/from Little Endian representation.

This is NOT automatically done inside the toolkit.

Only device global data from the system channel are converted by the toolkit.

The sample project, created for Win32, does not allow PCI cards (CIFX50 / CIFX90 etc.)
being completely restarted (Hardware Reset), because PCI registers are not accessible from
a Win32 user application.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 8/117

2 How to port the cifX Toolkit

This is a short instruction on how to port the cifX Toolkit to an own embedded system. In general
the Toolkit is independent of any operating system and can be used with or without an operating
system and it is scalable.

The Toolkit can be ported to use the whole functionalities with inter-process synchronization,
interrupts, multi device support, automatic firmware and configuration download etc. or just using
the low-level device functions to access a physical dual port memory offered by netX based
hardware.

The Toolkit can be used for the following solutions:
Creating a function library for embedded Systems offering the CIFX API

Creating an operating system based device driver (e.g. Windows, Linux, VXWorks) offering
the CIFX API

Creating a solution for a Microcontroller based host system using just the Low-Level dual
port memory access functions to a netX based hardware

Depending on the solution, the available functionalities may be more or less complex.

Some example implementations are already available (Windows / MQX / none-OS) showing the
work to be done to port the Toolkit to an own hardware platform.

Also a Low-Level DPM function example is available showing the use of the Toolkits Low-Level
device functions.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 9/117

2.1 General Procedure

This chapter describes the general handling to port the Toolkit to an own platform.

Basics:

There are two different types of devices being handled by the Toolkit:
FLASH-based devices (like a comX) which have their firmware stored in a flash
RAM-based devices (like a cifX50) which get their firmware loaded by the driver / toolkit.

Depending on the type of device, the toolkit has different initialization and start-up functions to get
the netX hardware up and running.

Stub out Toolkit functions not necessary for the target:

To stub out a function means implementing a function to always return success (e.g. returning a
valid handle or returning a successful wait for timeout).

This means, the functions are still called in the toolkit handling progress but the function return
values are evaluated by the toolkit without an error and therefore the Toolkit will keep working.

This is valid for all USER_ and OS_ functions which must be implemented for the target system.

Example: “Stub out” the OS_Mutex function:

/ /
/*! Create an Mutex object for locking code sections
* \return handle to the mutex object */

/***/

void* 0S_CreateMutex(void)

return (void*)0x12345678;
}

/***/

/*! Wait for mutex

* \param pvMutex Handle to the Mutex locking object

\param ulTimeout Wait timeout

\return !'=0 on succes */

nt OS_WaitMutex(void* pvMutex, uint32_t ulTimeout)

return 1;

W oM N K %

/***/

/*! Release a mutex section

* \param pvMutex Handle to the locking object */
/ /
void OS_ReleaseMutex(void* pvMutex)
{

return;
}
/ /
/*! Delete a Mutex object
* \param pvMutex Handle to the mutex object being deleted */

/***/

void OS_DeleteMutex(void* pvMutex)
{

}

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 10/117
2.1.1 Step-by-Step Guide - What needs to be done

Copy the Source Folder (which contains the whole Toolkit) to your project.

Implement the OS Abstraction layer (according to the toolkit documentation) in an own /
separate C-file.

You may take a look at "OSAbstraction\OS_Win32.c" to see how this is done under Windows.
You don't need to implement all functions, depending to your “Use Case”

Options:

1. When not using cifX PCI cards or any other RAM-based device with the netX directly
connected to the PCI bus, you can stub out the functions OS_ReadPCIConfig() /
OS_WritePCIConfig())

2. When not using Interrupt you can stub out the “Event” functions (OS_CreateEvent() /
OS_SetEvent(), OS_ResetEvent() / OS_DeleteEvent() / OS_WaitEvent())

3. If you don't have a multitasking environment you can stub out the “Mutex” functions
(OS_CreateMutex() / OS_WaitMutex() / OS_ReleaseMutex() / OS_DeleteMutex()), as the
mutexes are only used to prevent re-entrant function calls.

Note: As the “Mutexes” are expected to work, the toolkit does not know about your
O/S you will need to return a value != 0 out of OS_CreateMutex () and
OS_WaitMutex().

Attention: Doing this in a multitasking environment will result in undefined behavior as
function re-entrancy cannot be controlled.

4. If you only have a comX or another netX with flashed firmware and f you don't want to use
the automatic file download / update feature of the toolkit which checks and updates the
Firmware during system start-up, you may stub out the “File” functions (OS_FileOpen() /
OS_FileRead() / OS_FileClose()) too

Attention: When using RAM-based devices these functions must be implemented.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 11/117

Implement the USER functions in an own / separate C-file.
You may take a look at "User\TKitUser.c" to see how this is done under Windows.

Options:
1) If you only have a comX or another netX hardware with flashed firmware you may stub out
the firmware / bootloader functions

- USER_GetOSFile() / USER_GetBootloaderFile())
- USER_GetFirmwareFileCount() / USER_GetFirmwareFile()
- USER_GetConfigurationFileCount() / USER_GetConfigurationFile()

If you don't want to use the automatic update feature of the toolkit, which checks and updates
the Firmware during start-up.

Attention: When using RAM-based devices these functions must be implemented.

Implement a cyclic timer (e.g. 500ms) which calls the function cifXTKitCyclicTimer().
This is needed if any of your devices is used in polling mode (not necessary if all devices are
used in interrupt mode).

Call the Toolkit initialization function cifXTKitInit()) from your application or driver framework
Add all your netX / cifX / comX devices under Toolkit control by:

1. Allocate a DEVICEINSTANCE structure

2. Filling in all needed parameters into the DEVICEINSTANCE structure

Note 1: You can use the element pvOSDependent to store any user parameter (non-
toolkit parameters) for each device and use the information in the USER or OS dependent
functions

Note 2: You can override the type of the device by adjusting the element eDeviceType if
it is not correctly auto-detected by the toolkit.

COMX Example:
0S_Memset(ptDevinstance, 0, sizeof(*ptDevinstance));

ptDevinstance->fPClICard = 0;
ptDevIinstance->pbDPM = <Insert pointer to DPM here>;
ptDevInstance->ullDPMSize = <Insert accessible size of DPM here>;

0S_Strncpy(ptDevinstance->szName, "cifX0", sizeof(ptDevInstance->szName));
ptDevInstance->pvOSDependent = MyDeviceData;

CIFX Example:
0S_Memset(ptDevinstance, O, snzeof(*ptDevInstance))
ptDevInstance->fPClICard = 1;

ptDevIinstance->pbDPM <Insert pointer to DPM here>;
ptDevInstance->ulDPMSize = <Insert accessible size of DPM here>;
0S_Strncpy(ptDevinstance->szName, "'cifX0", sizeof(ptDevinstance->szName));
ptDevInstance->pvOSDependent = MyDeviceData;

3. Call cifXTKitAddDevice() to add them under Toolkit control

Now you can use any of the cifX API functions to access your devices

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 12/117

2.1.2 Additional Toolkit Functions and Options

Optional: big-endian CPU support:

You will need to enable big-endian support in the toolkit by setting the pre-processor
definition "CIFX_TOOLKIT_BIGENDIAN", which instructs the toolkit to convert DPM access
endianness.

Attention: The toolkit will not swap packet data contents or I/O data as it does not know the
structured data behind these data areas. So the user has to do the endianess conversion
before calling xChannelPutPacket() / xChannellOWrite() and after xChannelGetPacket() /
xChannellORead() calls. Same is valid for system device and some other block access
functions (e.g. extended status block).

See section Big Endian Support on page 25 for more information.

Optional: Use DMA on PCI devices

Attention: This is only supported if the netX is directly connected to the PCI Bus (e.g. cifX).
It does not work with NXPCA-PCI boards (or any other PCl<-->DPM Bridge)

To use DMA you will need to do the following:
1. Insert the pre-processor define "CIFX_TOOLKIT_DMA"

2. Pass 8 DMA buffers which need to be aligned on a 256 byte boundary. These buffers
must be a multiple of 256 Bytes in size with a maximum size of 63.75kB

DMA Example:

ptDevinstance->ulDMABufferCount = 8;
ptDevInstance->atDmaBuffers[0] .ulSize
ptDevInstance->atDmaBuffers[0].ulPhysicalAddress
ptDevInstance->atDmaBuffers[0].pvBuffer
accessible pointer here>;
ptDevInstance->atDmaBuffers[0] -pvUser

8192;
<Insert phys. address here>;
<Insert virtual / cpu

MyDMAData ;

ptDevInstance->atDmaBuffers[7].ulSize
ptDevInstance->atDmaBuffers[7].ulPhysicalAddress
ptDevInstance->atDmaBuffers[7].pvBuffer
accessible pointer here>;
ptDevInstance->atDmaBuffers[7] -pvUser

8192;
<Insert phys. address here>;
<Insert virtual / cpu

MyDMAData;

See section DMA handling for I/O data transfers on page 34 for more information.

Optional: Dual Port Memory access via custom hardware access interface

The Dual-Port-Memory access functions (read / write) can be exchange by customer specific
functions. An example on how this can be done is shown in an example where the memory
access is done via an SPI interface.

See chapter Toolkit low-level hardware access functions on page 99 for more information.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 13/117

Optional: Extended toolkit function parameter checking

By default, the toolkit functions are only doing a minimal parameter checking (e.g. no NULL
pointer checking). This can be changed toolkit by setting the pre-processor definition
"CIFX_TOOLKIT_PARAMETER_CHECK"

See chapter Extended parameter check of Toolkit functions on page 36 for more information.

Optional: Device time setting during start-up

The toolkit offers an option to set the device time during device start-up. This is handled after
a firmware start and if the device firmware signals a time handling feature.

The device time setting is enabled by setting the pre-processor definition
“CIFX_TOOLKIT_TIME”

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 14/117

2.1.3 Creating an own Device Driver

Creating an operating system dependent device driver is a special case of using the Toolkit inside
of such a device driver.

A device driver has to follow the implementation guidelines of an operating system on one side and
has to expose the Hilscher CIFX API functions on the other side, to enable user applications to
work with netX based hardware.

The main task of a driver would be collecting the netX hardware resource information, initializing
the toolkit using this information and create the connection between the internal CIFX API functions
in the toolkit to a function interface usable by a user application.

The general procedure would also be the porting of the Toolkit to the target system (like described
earlier in this chapter) and calling the Toolkit global functions (e.g. cifXTKitInit() / cifXTKitDeinit()
etc.), usually called in a Main() function from an application, somewhere in the context of a device
driver.

The Toolkit global function definitions can be found in cifXToolkit.h
/* Toolkit Global Functions */

int32_t cifXTKitlnit (void);

void cifXTKitDeinit (void);

int32_t cifXTKitAddDevice (PDEVICEINSTANCE ptDevinstance);
int32_t cifXTKitRemoveDevice (char* szBoard, int fForceRemove);

void cifXTKitDisableHWInterrupt(PDEVICEINSTANCE ptDevinstance);
void cifXTKitEnableHWInterrupt (PDEVICEINSTANCE ptDevinstance);
void cifXTKitCyclicTimer (void);

The Hilscher CIFX API function definitions can be found in cifX_USER.h)

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit 15/117

2.2 Creating an Application using the Toolkit Low-Level DPM
Functions

Another use case of the Toolkit could be a very small Microcontroller based platform which should
be extended by a netX and where access to the netX hardware dual port memory (DPM), with its
Hilscher default memory layout, is necessary.

The CIFX Toolkit offers also low-level netX DPM access functions (so called DEV__ functions).
These functions can be used without an operating system and where only generic access to one
netX DPM is necessary. The only requirement, which is necessary to use the DEV functions, is the
initialization of some pre-defined data structures with the netX hardware dependent information like
DPM address, DPM size and so on.

Note: The CIFX API functions (e.g. xChannelOpen()) are not available when using the Toolkit
low-level device functions

Note: See section Toolkit low-level hardware access functions on page 99 for a detailed
description on how to use these functions

The following example shows the usage of the Toolkit DEV_ functions in such an environment.

Usage of the Toolkit DEV_ functions:

/ /

/*! Hardware function example

* \return 0 on success */

/ /

int32_t cifXHWSample(void)

{
int32_t [IDemoRet = DEV_NO_ERROR;
int32_t IRet = CIFX_NO_ERROR;
uint8_t* pbDPM = NULL; /* This pointer must be loaded to the DPM address */
uint32_t ulDPMSize = 0; /* Size of the DPM in bytes */
DEVICEINSTANCE tDevinstance; /* Global deveice data structure used by all DEV_xxx functions */

/* Get pointer to the hardware dual-port memory and check if it is available */
if (FALSE == cifXTkHWFunctions_GetDPMPointer(&pbDPM, &ulDPMSize))

/* Failed to get the hardware DPM pointer and size */

return -1;

#ifdef CIFX_TOOLKIT_HWIF
tDevInstance.pfnHwl fRead
tDevinstance.pfnHwlfiWrite

#endif

cifXHwFnRead; /* relizes read access to the system dependant DPM interface */
cifXHwFnWrite; /* relizes write access to the system dependant DPM interface */

/* Initialize the necessary data structures */
if (DEV_NO_ERROR == cifXTkHWFunctions_InitializeDataStructures(pbDPM, ulDPMSize, &tDevlnstance, 10000))

{
/* */
/* Read actual device states */
/* =

PCHANNEL INSTANCE ptSystemDevice
PCHANNEL INSTANCE ptChannel

= &tDevinstance.tSystemDevice;

= tDevinstance.pptCommChannels[COM_CHANNEL];
/* Wait for State acknowlede by the firmware */

0S_Sleep(100); /* Wait a bit */

/* read the host flags of the system device, first time to synchronize our internal status */
DEV_ReadHostFlags(ptSystemDevice, 0);

/* read the host flags of the communication channel, first time to synchronise our internal status */
DEV_ReadHostFlags(ptChannel, 0);

/* check if "system device" is ready... */
if (IDEV_IsReady(ptSystemDevice))

/* System device is not ready! */
IDemoRet = ERR_DEV_SYS_READY;

/* check if "communication channel™ is ready... */
} else if (!DEV_IsReady(ptChannel))

/* Communication channel is not ready! */
IDemoRet = ERR_DEV_COM_READY;

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to port the cifX Toolkit

16/117

} else

/*
/* At this point we should have a running device and a configured
/* communication channel.

/* Procced with "NORMAL Stack Handling!

/*

/* Signal Host application is available */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_READY, 1000);

/* Configure the device */

IDemoRet = cifXTkHWFunctions_ConfigureDevice(ptChannel, ptSystemDevice);
//if(DEV_NO_ERROR != IDemoRet)

// printf("Error™);

/* Ini e and activate interrupt if configured */
DEV_Initializelnterrupt (&tDevinstance);

if (DEV_NO_ERROR == IDemoRet)
{

/*

*/
*/
*/
*/
*/

/* At this point we should have a running device and a configured
/* communication channel if no error is shown
/*

*/
*/
*/

uint32_t ulState = 0;

/* Signal Host application is available */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_READY, 1000);

/* Switch ON the BUS communication */
IRet = DEV_BusState(ptChannel, CIFX_BUS_STATE_ON, &ulState, 3000);

*/

/* TODO: Decide to wait until communication is available or just go to */
*/

/* to the cyclic data handling and check the state there

/* Wait for communication is available or do this during the cyclic program handling*/

IDemoRet = cifXTkHWFunctions_WaitUntilCommunicating(ptChannel);

/* */
if (IDemoRet == DEV_NO_ERROR)
/* device is "READY", "RUNNING" and "COMMUNICATING" */
/* Start cyclic demo with 1/0 Data-Transfer and packet data transfer */
unsigned long ulCycCnt = 0;
//uint32_t ulTriggerCount = 0;
/* Cyclic 1/0 and packet handling for “ulCycCnt"times */
while(ulCycCnt < DEMO_CYCLES)
{
/* Start and trigger watchdog function, if necessary */
//DEV_TriggerWatchdog(ptChannel, CIFX_WATCHDOG_START, &ulTriggerCount);
/* Handle 1/0 data transfer */
10Demo (ptChannel);
/* Handle rcX packet transfer */
#ifdef FIELDBUS_INDICATION_HANDLING
Fieldbus_Handlelndications(ptChannel);
#else
PacketDemo (ptChannel);
#endif
ulCycCnt++;
}
/* Stop watchdog function, if it was previously started */
//DEV_TriggerWatchdog(ptChannel, CIFX_WATCHDOG_STOP, &ulTriggerCount);
3
/* Switch OFF the BUS communication / dont"t wait */
IRet = DEV_BusState(ptChannel, CIFX_BUS_STATE_OFF, &ulState, 0);
/* Signal Host application is not available anymore / don"t wait */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_NOT_READY, 0);
}
ize interrupt */
zelnterrupt (&tDevinstance);
}
3
/* Cleanup all used nenory areas and pointers */
cifXTkHWFunctions_UninitializeDataStructures(&tDevinstance);
/* cifXTkHWFunctions cleanup */
cifXTkHWFunctions_FreeDPMPointer(pbDPM);
return IDemoRet;
3
Note: The complete example can be found on the toolkit CD.

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

How to Access Serial DPM via SPI 17/117

3 How to Access Serial DPM via SPI

The serial DPM connection is realized by a proprietary protocol, converting parallel read and write
accesses into serialized commands streams transfered via a standard SPI master controller. The
Toolkit comes with a target independent function module (Serial DPM Interface) which implements
the proprietary serial DPM protocol for any available netX derivate. This function module becomes
part of the toolkit software architecture by implementing the "Custom Hardware Access Interface”,
which replaces the direct memory accesses (default handling for parallel DPM) with customized
routines for serial DPM access. As handling of the SPI master controller differs highly with regard
to hardware and operating system, the user has to implement a small set of target specific access
routines to perform a raw data transfer according to specification of the used SPI controller.

Note: A general description of the Custom Hardware Access Interface is given in section
Custom hardware access interface / Serial DPM on page 39 of this manual.

The use of the Serial DPM Interface neither requires any deeper knowledge about the proprietary
serial DPM protocol nor a complete insight into the concept of the “Custom Hardware Access
Interface”. While this is the most convenient way of getting started with a Serial DPM based
scenario, a target specific implementation of the serial DPM protocol may offer improvements in
terms of execution performance and code size.

Note: A Getting Started Guide: Serial Dual-Port Memory Interface with netX [6]
including hardware interface specification, detailed protocol description and some basic
examples is provided on the Toolkit CD (NXDRV-TKIT).

Block Diagram:

Implementation CIFX/netX C-Toolkit
USER Functions Toolkit API CIFX - API
(Device Configuration, File Handling etc.) w |
A
7\ \
OS Specific Functions PN Device Handling API Implementation
(Operating system implementation) N g
A A
/] y y
Interrupt Handling 4 CIFX / netX Hardware Access Functions
(ISR / DSR generic functions) (DEV_xxxxx - Low-Level Device Functions)

'

Custom Hardware Access Interface
HWIF_READS / 16 / 32, HWIF_READN
HWIF_WRITE8 / 16 / 32, HWIF_WRITEN

serial DPM
via SPI

CIFX / netX Dual Port Memory

Figure 2: Block Diagram: Custom Hardware Access Interface

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to Access Serial DPM via SPI 18/117

3.1 Serial DPM Interface Functions

The Serial DPM Interface functions are divided into two parts:

Serial DPM Interface Initialization
Serial DPM Interface requires initialization before passing control to general toolkit functions

OS/HW specific SPI access functions
To keep the Serial DPM Interface independent of the SPI hardware, the user needs to
implement a basic set of SPI access functions

3.1.1 Serial DPM Interface Initialization

The initialization of the serial DPM interface must be done prior to passing the device to toolkit
control (via cifXTKitAddDevice()). The initialization includes auto-detection of the connected serial
DPM device and populating the toolkit's device instance structure according to the connected netX
chip type:

Assign pointer to Hardware Access Function (pfnHwIfRead and pfnHwlIfWrite)
Adjust DPM pointer ppDPM to zero (Serial DPM is accessed via offset into DPM)
Set the fPCICard flag to FALSE

Note: The user application is still expected to correctly initialize the remaining elements of the
device structure (e.g. access name, interrupt number).

Function Call
int SerialDPM_Init (DEVICEINSTANCE* ptDevice);

Arguments
Argument Data type Description
ptDevice DEVICEINSTANCE * Toolkit device instance

Return Values

Return Values

SERDPM_NETX10 netX10 based serial DPM is connected

SERDPM_NETX50 netX50 based serial DPM is connected

SERDPM_NETX51 netX51, netX52, and netX90 based serial DPM is connected
SERDPM_NETX100 netX100 based serial DPM is connected
SERDPM_UNKNOWN Serial DPM device is not connected

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to Access Serial DPM via SPI 19/117

3.1.2 SPI Access Functions

As SPI handling itself relies highly on hardware platform and operating system environment, the
user has to provide a hardware/operating system specific implementation of a small set of SPI
access functions.

SPI Access Functions Description

OS_Spilnit Initialize SPI components (e.g. driver)
OS_SpiAssert Assert the chip select line
OS_SpiDeassert Deassert the chip select line
OS_SpiLock Lock the SPI bus

OS_SpiUnlock Unlock the SPI bus

OS_SpiTransfer Perform SPI transfer

Table 4: SPI Access Functions

3.1.2.1 OS_Spilnit

Initializes the components required to handle SPI transfers (e.g. drivers). This function returns
CIFX_NO_ERROR on success.

Function Call
long OS_Spilnit (void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* Device-specific parameter passed with toolkit initialization

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to Access Serial DPM via SPI 20/117

3.1.2.2 OS_SpiAssert

Asserts the chip select line which is connected to the netX serial DPM slave device. The serial
DPM requires a falling edge of the chip select signal to initiate a read or write process.

Function Call
void OS_SpiAssert (void* pvOSDependent)

Arguments

Argument Data type Description

pvOSDependent void* Device-specific parameter passed with toolkit initialization
3.1.2.3 OS_SpiDeassert

Deasserts the chip select line which is connected to the netX serial DPM slave device. The end of
a transaction on the netX serial DPM is signaled via a rising edge of the chip select signal.

Function Call
void OS_SpiDeassert (void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* Device specific parameter passed with toolkit initialization

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to Access Serial DPM via SPI 21/117

3.1.2.4 OS_SpiLock
Locks the SPI bus to deny parallel access to the bus.

Function Call
void OS_SpilLock (void* pvOSDependent)

Arguments

Argument Data type Description

pvOSDependent void* Device-specific parameter passed with toolkit initialization
3.1.25 OS_SpiUnlock

Unlocks the SPI bus.

Function Call
void O0S_SpiUnlock (void* pvOSDependent)

Arguments

Argument Data type Description

pvOSDependent void* Device-specific parameter passed with toolkit initialization
3.1.2.6 OS_SpiTransfer

Initiates a data transfer with the netX serial DPM. Data bytes in the send buffer are clocked out to
the serial DPM, while received bytes are stored in the receive buffer. Consider that send and
receive buffers are optional, thus the routine must be capable of sending dummy bytes (in case
pbSend == NULL) and discard receive bytes (if pbRecv == NULL). The caller may not pass any
buffer at all, to initiate an idle transfer (protocol dependent wait cycles).

Function Call

void OS_SpiTransfer (void* pvOSDependent, uint8_t* pbSend,
uint8_t* pbRecv, uint32_t ullLen)

Arguments

Argument Data type Description

pvOSDependent void* Device-specific parameter passed with toolkit initialization
pbSend uint8* Send buffer

pbRecv uint8* Receive buffer

ulLen uint32_t Length of SPI transfer

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

How to Access Serial DPM via SPI

22/117

3.2 Example

The following example shows the usage of the Serial DPM Interface:

#include <cifXToolkit_h>
#include <CIFXErrors.h>
#include <SerialDPMInterface.h>
#include <0OS_Spi -h>

/* Toolkit device instance */
static DEVICEINSTANCE s_tDevinstance = {.pvOSDependent

&s_tDevinstance,

-ulDPMSize = 0x10000,
.szName = "cifX0"};
/ /
/*! Assert chip select
* \param pvOSDependent OS Dependent parameter */
/ /
void OS_SpiAssert(void* pvOSDependent)
/* HW/0S specifc implementation to access SPI bus */
/ /
/*! Deassert chip select
* \param pvOSDependent OS Dependent parameter */
/ /
void OS_SpiDeassert(void* pvOSDependent)
/* HW/0S specifc implementation to access SPI bus */
/ /
/*! Transfer byte stream via SPI
* \param pvOSDependent OS Dependent parameter
* \param pbSend Send buffer (Can be NULL for polling data from slave)
* \param pbRecv Receive buffer (Can be NULL if slaves received data
is discarded by caller)
* \param ulLen Length of SPI transfer */

/ /
void 0S_SpiTransfer(void* pvOSDependent, uint8 t* pbSend, uint8_t* pbRecv, uint32_t ullLen)

/* HW/0S specifc implementation to access SPI bus */

}

/
/*! Serial DPM Example

/
void SerialDPM_Example(void)
int32_t ITkRet = CIFX_NO_ERROR;

/* First of all initialize toolkit */
ITkRet = cifXTKitlnit(Q);

iF(CIFX_NO_ERROR == ITkRet)
{

int iSerDPMType;

if (SERDPM_UNKNOWN == (iSerDPMType = SerialDPM_Init(&s_tDevinstance)))

/* Serial DPM protocol could not be recognized! */
} else

/* 1SerDPMType contains connected netX chip type */

/* Add the device to the toolkits handled device list */
ITkRet = cifXTKitAddDevice(&s_tDevinstance);

/* 1T it succeeded do device tests */
if(CIFX_NO_ERROR != ITkRet)

/* Uninitialize Toolkit, this will remove all handled boards from the toolkit and

deallocate the device instance */
cifXTKitDeinit();
} else

/* Start working with cifX APl */

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit

23/117

4 The cifX/netX Toolkit

The toolkit consists of several C modules and header files which offer abstract access to the cifX
dual ported memory (DPM). All functions known from the cifX driver are made available in the
toolkit. Also the underlying hardware access functions are included.

4.1 Directory Structure and Content
4.1.1 cifX Toolkit CD
CD Content
Directory Contents
cifXToolkit Operating system independent C source code of the toolkit (see above)
Documentation All documents available with the toolkit
Examples Example implementation of the toolkit source for different operating systems

Table 5: Toolkit Directory Structure

4.1.2 cifXToolkit
Directory Contents
This directory contains the cifX Toolkit C source code
BSL Example Second Stage Boot Loader, necessary for none FLASH-based hardware (e.g.
CIFX50)
Common Common header files used by the toolkit.
Source All toolkit header files and C-modules
OSAbstraction Operating system abstraction layer used by the toolkit.
Note: This needs to be implemented by the user.
User C-Modules that need to be implemented by the user for the toolkit to work properly.
E.g. Passing bootloader / firmware and configuration files to the toolkit functions
SerialDPM Target independent SPI protocol implementation
doxygen Doxygen components, to create an internal documentation of the toolkit
Doc A doxygen generated documentation of the toolkit

Table 6: Toolkit Directory Structure - cifXToolkit

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit

24/117

4.1.3 Documentation

Directory

Contents

cifX netX Toolkit - DPM TK xx EN.pdf

This documentation

Second Stage Bootloader netX.pdf

Description of the netX bootloader functions

netX Dual-Port Memory Interface DPM xx EN.pdf

Description of the netX default dual port memory interface

CIFX API PR xx EN.pdf

Description of the CIFX API

Error Codes EN xx.pdf

Error code summary (Driver/Toolkit, Firmware, Protocol Stacks)

cifX netX Application Programmers Guide xx EN.pdf

Programmers introductions

\SerialDPM

Serial DPM interface with netX GS xx EN.pdf

Getting started with netX serial DPM

netX 51 52 Programming Reference Guide PRG xx
EN.pdf

netxX51/52 programming reference guide

netX10_Technical_Reference_Guide_xx.pdf

netX10 technical reference guide

netX50_Program_Reference_Guide_Recxx.pdf

netX50 programming reference guide

SP|_Slave_DPM_netX_100_500_HAL_xx_EN.pdf

netX100/500 SPI Slave interface as DPM

Table 7: Toolkit Directory Structure - Documentation

4.1.4 Examples\cifXToolkit

Contents

Directory

CIFX Toolkit implementation examples for different operating systems.
Including example source code to exchange the parallel DPM access functions by serial DPM functions (SPI host

examples).
nonOS Operating system independent implementation including SPI Host functions
\netX None OS based example for the
netX10 /50 / 100 ARM based controllers
Note: Only SPI Host example implementation available
rcxX Implementation for the Hilscher rcX RTOS
Note: Only SPI Host implementation available (no parallel DPM functions)
Note: An rcX version must be already available to run the example
Win32 Windows 32Bit implementation (Only running as a USER Mode Application)
Note: Only parallel DPM example implementation available

Table 8: Toolkit Directory Structure - Examples\cifXToolkit

4.1.5

Examples\cifXTkitHWFunctions

Directory Contents

Containing the Low-Level DPM access functions from the toolkit to directly access one netX DPM.
Implementation examples for different operating systems

nonOS

None OS based example

Win32

Windows 32Bit example
(Only running as a USER Mode Application . CIFX Device Driver must be
installed)

Table 9: Toolkit Directory Structure - Examples\cifXTKitHWFunctions

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit 25/117
4.2 Data Packing

Data structures in the DPM of netX devices and packet based command structures are partially
byte aligned. To ensure correct data packing of rcX data structures used in the toolkit, all structures
are byte aligned by default.

4.3 Big Endian Support

The netX Toolkit supports "Big Endian" host systems. This means, the netX toolkit offers a
compiler switch to change the default data representation from standard "little endian" to "big
endian”.

Note: Protocol stacks on the netX are only "Little Endian" aware, because they are execute
on a target system which has a little Endian data representation.

Attention: Endianness also depends on the physical access (Byte/Word/DWORD) to the DPM.
On systems which are only supporting 16Bit access to peripheral memory (e.g.
Freescale MCF51CN128), a Byte access to a 16Bit connected DPM does not result in
the expected data of seeing the Byte content in Bit [0:7] of CPU register.

The Toolkit is not aware of such hardware access behaviours and the internal "BIG
ENDIAN" macros are not working in such an environment, because there is no "Byte
exchange" and DWORD swapping will also deliver wrong results in the CPU registers.

In such an environment use either a 8Bit access mode, change/rewrite the macros and
the access to the DPM or use the CIFX _TOOLKIT_HWIF read/write functions to
manipulate the resulting data content to have a correct data representation.

The "Big Endian" data representation covers the device initialization and standard informational
data structures of a netX based device. This means all functions executed inside of the toolkit and
the standard data and information structures, reachable via the "xSystemdevice" functions are
endianness aware.

All data structures which are protocol dependent (state information / diagnostic data / runtime 1/0O
data / protocol stack specific requests, confirmation, indications etc.) and exchanged between the
user application and the protocol stack must be converted by the user application.

Also the packet header of acyclic commands which are exchanged by rcX packets between the
hardware and the user application are not converted by the toolkit.

Note: All packets send via xSysdevicePutPacket() / xChannelPutPacket(), need to be
converted by the application in to the little Endian format of the netX device..
Packets which are received via xSysdeviceGetPacket()/xChannelGetPacket() /
xChannelGetSendPacket() will have the little Endian format of the netX device and
must be converted to big Endian.

Note: Automatic conversion for packets will NOT be available. For samples on how the data
conversion can be done, take a look at the toolkit module cifXEndianess.c.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit

26/117

"Big Endian" support is enabled by setting the "CIFX _TOOLKIT_BIGENDIAN" define in your

project.

#define CIFX_TOOLKIT_BIGENDIAN

4.4 64-bit support

The toolkit supports 64-bit processor, by using fixed width data types defined in ISO C99 (stdint.h).
For Compilers that don't support ISO C99 standard, the developer needs to provide an equivalent

header file.

The following data types must be at least present:

Data Type / typedef

Description

signed types

int8_t signed 8-bit data type

int16_t signed 16-bit data type
int32_t signed 32-bit data type
int64_t signed 64-bit data type

unsigned types

uint8_t unsigned 8-bit data type

uintlé_t unsigned 16-bit data type
uint32_t unsigned 32-bit data type
uint64_t unsigned 64-bit data type

Further documentation of this header file can be found here:

http://en.wikipedia.org/wiki/Stdint.h

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

http://en.wikipedia.org/wiki/Stdint.h

The cifX/netX Toolkit 27/117

45 FLASH-based vs RAM-based devices

A general definition for using netX-based devices is the device type eDeviceType defined in the
DEVICEINSTANCE structure. This type defines whether the device is a RAM-based or FLASH-
based device and therefore the general handling in the cifX toolkit.

Device Type Definition:

RAM-based Device

For RAM-based devices, the firmware and the configuration files are not stored on the
hardware. On each power-up sequence, all executables have to be loaded to the hardware
in order to get the hardware running. Therefore the user application or device drivers have to
provide the firmware and configuration files at start-up time. Example: Most PC card CIFX
and PC card CIFX express are RAM-based devices.

FLASH-based Device

For a Flash-based device, the firmware and the configuration are stored in a local Flash chip.
If the power supply is switched on, the device starts, loads and executes the stored firmware.
User provided firmware and configuration files are not always downloaded to the hardware,
to protect the live time of the Flash, instead the file internal MD5 checksums are verified and
only downloaded to the hardware if they are different. Example: COMX modules, netIC
modules and CIFX4000 are Flash-based devices.

Note: netX90/netX4000 are Flash-based devices too, but they are not handled the same way
as described above. The handling is: A firmware is never downloaded automatically
even if the checksums are different. A firmware download always has to be initiated by

the user.
Device Type Value Description
eCIFX_DEVICE_AUTODETECT 0 Autodetection:
fPClcard = 1 => RAM based device
Cookie available => FLASH based device
Cookie not available => RAM based device
eCIFX_DEVICE_RAM_BASED 2 Handle device as a RAM based device
eCIFX_DEVICE_FLASH_BASED |3 Handle device as a FLASH based device
eCIFX_DEVICE_DONT_TOUCH |4 Expect the device as up and running
Note: This setting is only used for debugging purpose, to prevent any
changes at the device during startup and expecting an already
initialized device.

Table 10: Device types

Drivers and user applications using eDeviceType = eCIFX_DEVICE_AUTODETECT only if they
want to dynamically detect the correct device handling.

If the device is already defined (like COMX etc.) than the specific device type should be used to
make sure the device is handled in the expected way and any malfunction is correctly reported by
the toolkit.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 28/117

4.6 Loadable Firmware Files

The netX Toolkit supports monolithic firmware files ((NXF, .NXI, .NAI) and the usage of loadable
modules (.NXO).

A monolithic firmware is one file containing the operating system and one or more communication
protocol stacks.

Loadable modules are files that only contain a communication protocol stack without the operating
system and the operating system is located in an own file named "Base OS Firmware".

While loadable modules are defined by an own file header and file extension, the base OS module
uses the same file header structure and file extension like a monolithic firmware.

File Extension:

File extension Identifies
.NXF netX Firmware Monolithic Firmware / Base OS Firmware
.NXI netX Firmware for Communication CPU Monolithic Firmware (netX90/netX4000)

(internal Flash memory)

.NAI netX Firmware for Application CPU Monolithic Firmware (netX90)
(internal Flash memory)

.NXO netX Firmware Module Loadable Firmware Module

The file header structure definitions can be found in the header file HilFileHeaderV3.h, located in
the toolkit source directory.

The toolkit allows using the listed types of firmware files.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit

29/117

4.6.1

Initialization process using a monolithic firmware

The following figures show the process of adding a device to the toolkit and the Function Calls
being made by the toolkit. Depending on the type of device (RAM based / FLASH based).

There are two major approaches to initializing a card

The device is FLASH based and will already have all things up and running (e.g. comX)

The device is RAM only based and must be prepared before it can be used (e.g. cifX PCI

cards)

46.1.1

Using a RAM-based device

Application/Driver USER F

unctions

cifXTKitAddDevice

HW Functions

Notify (PRE_RESET)

OS_ReadPClIConfig

OS_WritePClConfig

HW Reset

Notify

(POST_RESET)

USER_GetBootloaderFile

Notify (PRE_BOOTLOADER)

Download

Notify (PO

ST_BOOTLOADER)

2nd Stage Loader

Start Loader

USER_GetAliasName

Get Device Info

USER_GetFirmwareFileCount

Check Alias
=

USER_GetFirmwareFile

USER_GetConfigurationFileCount

Download Firmware

USER_GetConfigurationFile

USER_GetInterruptEnable

Download Configuration

Start FW

Read Subblocks/
Build DPM Channel Layout

Figure 3: Initialization Sequen

cifXTKitAddDevice return

ce of a RAM-based device

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit

30/117

4.6.1.2 Using a Flash-based device
Application/Driver USER Functions Toolkit HW Functions
cifXTKitAddDevice
Get Device Info
USER_GetAliasName
Check Alias
= |
) Read Channel Info
Files are only

downloaded if the
user function delivers
files and the file
checksum is different
to the one from the
device

USER_GetFirmwareFileCount

USER_GetFirmwareFile

Download Firmware

USER_GetConfigurationFileCount

USER_GetConfigurationFile

Download Configuration

USER_GetinterruptEnable

Read Channel Info

Start FW

Read Subblocks/
Build DPM Channel Layout

cifXTKitAddDevice return

Figure 4: Initialization Sequence of a Flash-based device (firmware already running)

Note:

netX90/netX4000 are Flash-based devices too, but the handling differs from the

sequence above. The handling for netX90/netX4000 is: A firmware is never
downloaded automatically even if the checksums are different. A firmware download
always has to be initiated by the user.

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit

31/117

4.6.2

Initialization process using Loadable Firmware Modules

The following figures show the process of adding a device to the toolkit and the Function Calls
being made by the toolkit. Depending on the type of device (RAM based / FLASH based).

There are two major approaches to initializing a card

The device is FLASH based and will already have all things up and running (e.g. comX)

The device is RAM only based and must be prepared before it can be used (e.g. cifX PCI

cards)

4.6.2.1

Using a RAM-based device

Application/Driver

USER F

unctions

cifXTKitAddDevice

HW Functions

Notify (PRE_RESET)

0OS_ReadPClIConfig

OS_WritePCIConfig

HW Reset

Notify

(POST_RESET)

USER_GetBootloaderFile

Notify (PRE_BOOTLOADER)

Download

Notify (PO

ST_BOOTLOADER)

2nd Stage Loader

Start Loader

USER_GetAliasName

Additional user
function which must
deliver the base OS
file

USER_GetGetOSFile

Check Alias
<— Get Device Info

Download

USER_GetFirmwareFileCount

Base OS Firmware

Start Base OS Firmware

USER_GetFirmwareFile

Download Firmware

USER_GetConfigurationFileCount

USER_GetConfigurationFile

USER_GetInterruptEnable

Download Configuration

Start FW

Read Subblocks/
Build DPM Channel Layout

cifXTKitAddDevice return

Figure 5: Initialization Sequence of a RAM-based device

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit

32/117

4.6.2.2

Using a Flash-based device

HW Functions

downloaded if the
user function delivers
files and the file
checksum is different
to the one from the
device

Get Device Info

[—

Check Alias

Read Channel Info

Application/Driver USER Functions
cifXTKitAddDevice
USER_GetAliasName
USER_GetGetOSFile
<
Files are only

Download
Base OS Firmware

Start Base OS Firmware

USER_GetFirmwareFileCount

USER_GetFirmwareFile

USER_GetConfigurationFileCount

|

Download Firmware

USER_GetConfigurationFile

USER_GetinterruptEnable

Download Configuration

Read Channel Info

Start FW

Read Subblocks/
Build DPM Channel Layout

cifXTKitAddDevice return

Figure 6: Initialization Sequence of a Flash-based device (Firmware already running)

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit 33/117

4.7 Interrupt handling

The interrupt handling in the toolkit is separated into two functions. An ISR (Interrupt Service
Routine) function getting the actual interrupt information of the hardware and acknowledges the
interrupt and a DSR (Deferred Service Routine) functions which processes the interrupt
information.

QRQ Hander CIXTKitISRHandler CIfXTKitDSRHandler

cifXTKitISRHandler

cifXTKitISRHandler return

T
|
I
|
|
I
|
I
|
[
I
I
|
I
I
i
l Further processing
: depends on the
: return value.
I
|
|
I
|
|
I
|
|
I
|
|
|
|
|
|
|

cifXTKitDSRHandler

Calling the DSR

depends on the cifXTKitDSRHandler return
operating system

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|

Figure 7: Interrupt handling

The separation is done to support operating systems which expect the implementation of a
deferred interrupt handler function to be able to leave the hardware interrupt level which usually
does not allow to call operating system specific interprocess communication functions (e.g. Event
etc.).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 34/117

4.8 DMA handling for I/O data transfers

The cifX/netX Toolkit supports bus master DMA transfers of I/O image data on PCI cards. This
feature must be explicitly enabled through a general toolkit definition in the user project or compiler
option. Activating the DMA data transfer expects to definition of the necessary DMA buffers in the
DEVICE_INSTANCE structure before adding the device to the toolkit

#define CIFX_TOOLKIT_DMA

Note: DMA handling needs specific hardware/firmware support and toolkit initialization

Note: Only I/O area 0 is supported when DMA is used!

DMA Mode can only be enabled on devices if the netX is directly connected to the PCI Bus (e.g.
CIFX-50).

The host needs to provide 8 DMA buffers before adding the device to the toolkit. These buffers are
automatically assigned to the appropriate 1/0O Blocks according to the following table:

Buffer Number Comm. Channel Block

0 0 Input Area 0
1 0 Output Area 0
2 1 Input Area 0
3 1 Output Area 0
4 2 Input Area 0
5 2 Output Area 0
6 3 Input Area 0
7 3 Output Area 0

Table 11: DMA buffer sssignment

The user created DMA buffers must meet the following restrictions:
Aligned on a 256 Byte boundary
Minimal Size = 256 Byte
Maximal Size = 63,75 kB
Size must be a multiple of 256 Bytes
All 8 Buffers must be supplied, if DMA is to be used

Buffers must be a continued memory area and non cached

Note: The DMA transfers are always handled and controlled by the netX chip. The transfer is
activated by the standard toolkit functions xChannelORead() / xChannelOWrite() and
transparent to the user application.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit

35/117

Example

/
i
i

{

* Initialize the cifX Toolkit */

int32_t IRet = cifXTKitInit(Q);

F(CIFX_NO_ERROR == IRet)

uint32_t ulldx;
PDEVICEINSTANCE ptDevinstance =
(PDEVICEINSTANCE)OS_ Memal loc(sizeof(*ptDevinstance));

0S_Memset(ptDevinstance, O, snzeof(*ptDevInstance))
ptDevinstance->fPClICard = 1; /* This must be set for DMA */
ptDevInstance->pvOSDependent <insert use specific data>;
ptDevIinstance->pbDPM <insert pointer to DPM>;
ptDevInstance->ullDPMSize <insert size of DPM>;
0S_Strncpy(ptDevinstance->szName,

"cifXo",

sizeof(ptDevinstance->szName)) ;
/* Add DMA Buffers */
ptDevinstance->ulDMABufferCount = CIFX_DMA BUFFER_COUNT;
for(ulldx = 0; ulldx < CIFX_DMA_BUFFER_COUNT; ++ulldx)

{

CIFX_DMABUFFER_T* ptDMABuffer = &ptDevlnstace->atDmaBuffers[ulldx];

ptDMABuffer->ulSize <Size of the DMA Buffer>
ptDMABuffer->ulPhysicalAddress
ptDMABuffer->pvBuffer

ptDMABuffer->pvUser

<Pointer to the DMA Buffer>
<Insert user specific data>

s
/* Add the device to the toolkits handled device list */

IRet = cifXTKitAddDevice(ptDevinstance);

> Work with the cifX Driver API

<Physical address (32Bit) to DMA Buffer>

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit 36/117

4.9 Extended parameter check of Toolkit functions

Several Toolkit API function calls expect valid pointer and handles passed via its parameter list. By
default these parameters are not validated by the Toolkit functions, thus it is under the
responsibility of the caller that the pointers and handles passed to the Toolkit functions are valid.

The Toolkit provides a feature which enables a simple validation of the pointer parameters, i.e. the
function returns with an error (CIFX_INVALID_POINTER) if a NULL pointer is passed to the
function. Additional driver, system device and channel handles are validated, i.e. only those
handles are accepted which are returned by the appropriate open function call (otherwise returns
error CIFX_INVALID_HANDLE). Both features must be explicitly enabled through a general toolkit
definition in the user project or compiler option.

#define CIFX_TOOLKIT_PARAMETER_CHECK

Note: As the parameter validation has influence on the performance of the function call, time-
critical cifX API calls like xChannellORead() or xChannelPutPacket() are not affected
by the parameter validation.

Note: The predominant majority of invalid pointers are not NULL, thus the simple pointer
check provided by the Toolkit does not relieve the caller to supply a reliable memory
management.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 37/117

4.10 Device time setting

The cifX/netX Toolkit supports an optional device time setting function. Time setting is handled
during the start-up phase of the device (cifXInit.c / cifXStartDevice()). If the firmware is up and
running and signals a time handling feature (RTC type != 0 and RTC status = 0), a corresponding
time set command is created and send to the devices system channel.

#define CIFX_TOOLKIT_TIME

The time handling feature of the device is evaluated by ulHWFeatures in the
NETX_SYSTEM_STATUS_BLOCK.

ulHWFeatures

RTC Extended Memory
31.16 |15 |14 |13 |12 |12 |10 9 |8 | 7|6 | 5| 4 3‘2|1|o

Type :

00 =No RTC

01 = RTC internal
10 = RTC external
11 = RTC emulated

Status:

0 = not Set

1= Set

Unused set to 0

Definitions for ulHWFeatures:
/* RTC */
#define RCX_SYSTEM_HW_RTC_MSK 0x00000700
#define RCX_SYSTEM_HW_RTC_TYPE_MSK 0x00000300
#define RCX_SYSTEM_HW_RTC_TYPE_NONE 0x00000000
#define RCX_SYSTEM_HW_RTC_TYPE_INTERNAL 0x00000100
#define RCX_SYSTEM_HW_RTC_TYPE_EXTERNAL 0x00000200
#define RCX_SYSTEM_HW_RTC_TYPE_EMULATED 0x00000300
#define RCX_SYSTEM_HW_RTC_STATE 0x00000400

OS_Time() Function:

To be able to use the time setting feature of the toolkit an OS_Time() function must be
implemented in the OS_Abstraction.c module.

Time Format;:

Base Time: POSIX/UNIX/ISO 8601 = > 01.01.1970 / 00:00:00 (midnight)

Tick resolution: “Seconds” since “Base Time”

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit

38/117

Time Command:

/

* Packet: RCX_TIME_COMMAND_REQ/RCX_TIME_COMMAND_CNF

*

*/

/* Time
#define
#define
#define

/* Time
#define
#define
#define

typedef

command codes */
TIME_CMD_GETSTATE
TIME_CMD_GETTIME
TIME_CMD_SETTIME

RTC information */
TIME_INFO_RTC_MSK
TIME_INFO_RTC_TYPE_MSK
TIME_INFO_RTC_RTC_STATE

__TLR_PACKED_PRE struct RCX_TIME_CMD_DATA Ttag

TLR_UINT32 ulTimeCmd;
TLR_UINT32 ulData;
TLR_UINT32 ulReserved;

} _ TLR_PACKED_POST RCX_TIME_CMD_DATA T;

/***** request packet *****/

typedef _ TLR PACKED PRE struct RCX_TIME_CMD_REQ Ttag

TLR_PACKET HEADER T
RCX_TIME_CMD_DATA_T

} RCX_TIME_CMD_REQ T;:

/***** confirmation packet *****/
typedef _ TLR_PACKED_PRE struct RCX_TIME_CMD_CNF_Ttag

TLR_PACKET_HEADER_T
RCX_TIME_CMD_DATA_T

3 RCX_TIME_CMD_CNF_T;

tHead;
tData;

tHead;
tData;

0x00000001
0x00000002
0x00000003

0x00000007
0x00000003
0x00000004

/* packet header
/* packet data

/* packet header
/* packet data

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

The cifX/netX Toolkit 39/117

4.11 Custom hardware access interface / Serial DPM

The cifX/netX Toolkit supports an optional custom hardware interface to access the DPM of a netX
based device. This interface allows to exchange the default read/write access functions from the
Toolkit (e.g. memcpy() / pointer access) to the DPM by customer specific read/write functions. This
feature must be explicitly enabled through a general toolkit definition (#define
CIFX_TOOLKIT_HWIF) in the user project or compiler option.

Overview Custom Hardware Access Interface:

Implementation CIFX/netX C-Toolkit

USER Functions Toolkit AP CIFX - API

(Device Configuration, File Handling etc.) | W

A A

/ /
Device Handling API Implementation

OS Specific Functions
(Operating system implementation)

A
\ 4

% Y Y
i /
Interrupt Handling 14 CIFX / netX Hardware Access Functions
(ISR / DSR generic functions) (DEV_xxxxx - Low-Level Device Functions)

A
/

Custom Hardware Access Interface
HWIF_READS8/ 16 / 32, HWIF_READN

HWIF_WRITE8 /16 / 32, HWIF_WRITEN

e.g.
Physical DPM serial DPM
via SPI

CIFX / netX Dual Port Memory

Figure 8: Overview custom hardware access interface

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 40/117

Calling Sequence of a Default DPM Access and a Custom Function Access:

Application CIFX - API Toolkit HW Functions Custom Hardware
Access Interface

(e.g. SPI)

cifX API Function

Toolkit Function

I AN
y

Custom Hardware Interface Function

é

Custom DPM access
(CIFX_TOOLKIT_HWIF defined) T

via pfnHwlIfRead() / pfnHwIfWrite()

-

Parallel DPM Function

(CIFX_TOOLKIT_HWIF not defined) |------- (e.g. memcopy())

Parallel DPM access ﬁ 5

i
|
|
|
i return CIFX_NO_ERROR
|
i
|

return CIFX_NO_ERROR

Figure 9: Calling sequence of a Default DPM Access and a Custom Function Access

The following diagram illustrates the functional principle on basis of the xChannelGetMBXState()
call.

Calling Sequence Example: xChannelGetMBXState()

(CIFX_TOOLKIT_HWIF not defined)
|

Application CIFX - API Toolkit HW Functions Custom Hardware
Access Interface
xChannelGetMBXState()	}	
>		
‘	DEV_GetMBXState()	
1 r ‘		
} : } DEVICE_INSTANCE.pfnHwIfRead() }		
} Custom DPM read accesshﬁ\“m] M‘		
-0		
}	} Read number of pending packet }	
		via custom hardware access function
\ [= i		
} } } (CIFX_TOOLKIT_HWIF defined) }		
I		
} }	Read number of }	
I e	p.end'ing packets	
Default DPM read acces%*“’"““ } VRN EIEE T		
} access		
I		
I I		
_		

[

|

[

return CIFX_NO_ERROR,
|

|

|

|

return CIFX_NO_ERROR

Figure 10: Calling Sequence Example: xChannelGetMBXState()

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 41/117

4.11.1 Defining and adding custom access functions

To use the custom hardware access interface, a read and a write access function must be
implemented and announced, per device, to the Toolkit by assigning the pfnHwilfRead and
pfnHwIfWrite function pointer of the DEVICE_INSTANCE structure with own read/write functions.

The Toolkit later uses the pfnHwIfRead and pfnHwIfWrite pointer whenever a DPM read or write
should be processed.

Adding customer functions to the Toolkit:

Setting the global toolkit definition to activate the custom hardware function handling
#define CIFX_TOOLKIT_HWIF

Activation of the custom hardware access interface expects the definition of the necessary
hardware access functions in the DEVICE_INSTANCE structure before adding the device to the
toolkit.

Announcing / Passing the functions pointers of the custom read/write functions to the Toolkit

/* Announce custom read/write access function */
ptDevInstance->pfnHwl fRead = <insert pointer to read access function>;
ptDevinstance->pfnHwlfWrite = <insert pointer to write access function>;

/* Add the device to the toolkits handled device list */
IRet = cifXTKitAddDevice(ptDevIinstance);

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 42/117

411.1.1 Prototype of the Read Function (pfnHwIfRead())

Whenever the toolkit needs to read data from the DPM, the custom read access function is
invoked.

Function Call
void* pfnHwlfRead (void* pvDevinstance, uint32_t ulAddr, void* pvData, uint32_t ullLen)

Arguments

Argument Data type Description

pvDevinstance void* Device instance of the device which should be accessed

ulAddr uint32_t Pointer to the source inside the DPM where the content is
to be read from

pvData void* Pointer to the destination where the data read from DPM
are copied to

ulLen uint32_t Number of bytes to read from DPM

Return Value

pvData is returned

4.11.1.2 Prototype of the Write Function (pfnHwIfWrite())

Whenever the toolkit needs to write data to the DPM, the custom write access function is invoked.

Function Call
void* pfnHwlfWrite (void* pvDevinstance, uint32_t ulAddr, void* pvData, uint32_t ullLen)

Arguments

Argument Data type Description

pvDevinstance void* Device instance of the device which should be accessed

ulAddr uint32_t Pointer/Offset to the destination inside the DPM where the
content is to be written to

pvData void* Pointer to the source of data which should be copied to
the DPM

ulLen uint32_t Number of bytes to write to DPM

Return Value

ulAddr is returned

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 43/117

4.11.2 Example

The following example code demonstrates the usage of the hardware access interface. Every read
access to the DPM is processed via the DPM_Read() routine, every write access via the
DPM_Write() routine, respectively.

/ /

/*! Read a number of bytes from DPM interface

* \param pvDevinstance Toolkit device instance (not used)

* \param ulDpmAddr Address in DPM to read data from

* \param pvDst Buffer to store read data

* \param ullLen Number of bytes to read */

/ /
void* DPM_Read (void* pvDevinstance, uint32_t ulAddr, void* pvData, uint32_t ullLen)
{

uint8_t* pbSrc
uint8_t* pbDst

(uint8_t*)ulAddr;
(uint8_t*)pvData;

while (ulLen--)
*pbDst++ = *pbSrc++;

return pvData;

}

/ /
/*! Write a number of bytes to DPM interface

* \param pvDevinstance Toolkit device instance (not used)

* \param ulDpmAddr Address in DPM to store data to

* \param pvDst Buffer holding data to store

* \param ullLen Number of bytes to store */

/***/

void* DPM_Write (void* pvDevinstance, uint32_t ulAddr, void* pvData, uint32_t ullLen)
{
uint8_t* pbSrc
uint8_t* pbDst

(uint8_t*)pvData;
(uint8_t*)ulAddr;

while (ulLen--)
*pbDst++ = *pbSrc++;

return (void*)ulAddr;

Before adding the cifX device to toolkit control, announce the DPM read/write access function by
assigning the hardware access function pointer in the DEVICE_INSTANCE structure.

/* Announce custom read/write access function */
ptDevInstance->pfnHwl fRead DPM_Read;
ptDevinstance->pfnHwlfWrite DPM_Write;

/* Add the device to the toolkits handled device list */
IRet = cifXTKitAddDevice(ptDevIinstance);

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

The cifX/netX Toolkit 441117

4.11.3 Serial DPM Access via SPI

By introducing the new netX10 and netX51 controllers, SPI becomes a standard interface for
accessing such netX based hardware. Please see section How to Access Serial DPM via SPI on
page 17 of this manual to get further information about the serial DPM interface.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit initialization and usage 45/117

5 Toolkit initialization and usage

The following chapters are describing the toolkit specific functions which need to be called, to
initialize all management functions and to add devices to the toolkit.

There is no hardware detection function included in the toolkit because such functions are very
hardware specific and can't be implemented in a standard to meet all possible requirements (e. g.
PCI bus scan, DPM address bus connection etc.).

Note: Hardware detection and enumeration (e.g. PCI) etc. is not part of the toolkit and need
to be done by the user application or frame work.

The minimum information the toolkit needs to be able to access a device is a pointer to the DPM
area of the netX based device (ptDevinstance->pbDPM) and the size of the DPM area
(ptDevinstance->ulDPMSize).

Note: If a custom hardware interface is used, the access functions must be defined before
adding the device to the toolkit.

This simple C-Source example shows the initialization process of the cifX/netX Toolkit.

/* Initialize the cifX Toolkit */
int32_t IRet = cifXTKitInit();
iT(CIFX_NO_ERROR == [IRet)
{
PDEVICEINSTANCE ptDevinstance =
(PDEVICEINSTANCE)OS_ Memal loc(sizeof(*ptDevinstance));
0S_Memset(ptDevinstance, 0, sizeof(*ptDevinstance));

ptDevInstance->fPClCard = 0;

ptDevInstance->pvOSDependent NULL ;

ptDevIinstance->pbDPM <insert pointer to DPM>;

ptDevInstance->ullDPMSize <insert size of DPM>;

#ifdef CIFX_TOOLKIT_HWIF
ptDevInstance->pfnHwl fRead
ptDevinstance->pfnHwlfWrite

#endif

0S_Strncpy(ptDevinstance->szName,

"cifXo",
sizeof(ptDevinstance->szName)) ;

/* Add the device to the toolkits handled device list */

IRet = cifXTKitAddDevice(ptDevIinstance);

/* ITf 1t succeeded do device tests */

iT(CIFX_NO_ERROR == IRet)

<insert pointer to read access function>;
<insert pointer to write access function>;

// Work with the device

}
}

===> Work with the cifX Driver API

/* Uninitialize the cifX Toolkit if done */
cifXTKitDeinit();

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit initialization and usage 46/117

5.1 DEVICEINSTANCE structure

The DEVICEINSTANCE structure is the global management structure for each device. The buffer
for this structure must be allocated and initialized by the user application. The pointer to the
structure must be passed to the toolkit by calling the cifXTKitAddDevice() function.

511 User definable data in the DEVICEINSTANCE structure

Structure name: DEVICEINSTANCE, PDEVICEINSTANCE

Element Type Description

Data to be inserted by user

ulPhysicalAddress uint32_t Physical DPM address
birgNumber uint8_t Assigned interrupt number
flrgEnabled int 0 = Not using interrupts

1 = Interrupt should be used

Note: This will indirectly be set via a
USER_GetlnterruptEnable() call

fPCICard int 0 = None PCI/PCle card

Note: None PCI cards will be checked for a running
firmware before attempting a reset

1 =PCI/PCle card

Note: PCI/PCle cards are usually reset every time they
are added to the toolkit. Except eDeviceType is set to
eCIFX_DEVICE_TYP_DONT_TOUCH.

eDeviceType CIFX_TOOLKIT_DEVICETYPE_E Type of the device (RAM / Flash based)

0 = eCIFX_DEVICE_AUTODETECT (default)
Autodetection - (PCI=RAM, DPM=Flash based)

1 = eCIFX_DEVICE_AUTODETECT_ERROR
Internally used if autodetection fails

2 = eCIFX_DEVICE_RAM_BASED

RAM based devices are reset during startup

3 = eCIFX_DEVICE_FLASH_BASED

FLASH based device with running Firmware expected

4 = eCIFX_DEVICE_DONT_TOUCH

Leave the device in the current state and try to connect to
it

Note: eDeviceType is used to distinguish between the different firmware behaviors in conjunction with the hardware.
In general 2 types of hardware are defined and supported:

= RAM-based hardware (firmware and configuration not stored on the hardware and must always be loaded)

= Flash-based hardware (firmware and configuration stored on the hardware in Flash)

eDeviceType can be used to change the default device handling inside the toolkit (see also section FLASH-based vs
RAM-based devices on page 27).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit initialization and usage

47/117

Structure name: DEVICEINSTANCE, PDEVICEINSTANCE

Element Type

Description

Data to be inserted by user

pvOSDependent void*

Pointer to user dependent data, not used by the Toolkit.

Note: This pointer can be used to pass user dependent
data to the USER_xxx and OS_xxx functions.

If the Toolkit is used inside a device driver, this pointer is
used to pass operating system dependent data to the
Toolkit functions (e.g. used for PCI cards to store PCI
register information)

pbDPM uint8_t*

Pointer to the dual ported memory

ulDPMSize uint32_t

Total/mapped dual ported memory size

szName char[16]

Device name (e.qg. "cifX0")

szAlias char[16]

Alias name for the card. Asynchronously fetched from
user by a call to USER_GetAliasName(), during device
initialization

pfnNotify PFN_CIFXTK_NOTIFY

Notification callback function during hardware initialization

This callback function can be used if additional handling
between the different initialization stages of the hardware
is necessary.

(e.g. adjust DPM settings (8Bit / 16Bit) if they are different
between ROM- and Bootloader startup)

Available notifications:
defined in CIFX_TOOLKIT_NOTIFY_E

0 = eCIFX_TOOLKIT_EVENT_PRERESET
1 = eCIFX_TOOLKIT_EVENT_POSTRESET

2 = eCIFX_TOOLKIT_EVENT_PRE_BOOTLOADER
3 = eCIFX_TOOLKIT_EVENT_POST_BOOTLOADER

DMA Mode only

ulDMABUufferCount uint32_t

Number of mapped DMA buffers

atDmaBuffers CIFX_DMABUFFER_TI8]

8 DMA Buffers that can be used by the toolkit.
Note: These buffers must be a multiple of 256 in size,

and must by physically contiguous

Custom Hardware Access Interface only

Note: Usable only if the global Toolkit option "CIFX_TOOLKIT_HWIF" is defined

pfnHwIfRead PFN_HWIF_MEMCPY Function pointer if user defined functions should be used
to read data from the DPM
pfnHwWIfWrite PFN_HWIF_MEMCPY Function pointer if user defined functions should be used

to write data to the DPM

Note: This information is used by xSysdeviceExtendedM

Extended Memory Information (additional target memory)

emory()

pbExtendedMemory uint8_t*

Pointer to an extended memory area

ulExtendedMemorySize |uint32_t

Size of the extended memory area

Table 12: Device instance structure - User provided data

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit initialization and usage

48/117

5.1.2 Toolkit internal data in the DEVICEINSTANCE structure
Structure name: DEVICEINSTANCE, PDEVICEINSTANCE

Element Type Description

Toolkit internal data

lInitError int32_t Device initialization error, if any

ptGlobalRegisters

PNETX_GLOBAL_REGBLOCK

Pointer to the netX global register block at the end
of the DPM

ulSerialNumber uint32_t Serial number (read during startup)
ulDeviceNumber uint32_t Device number (read during startup)
tSystemDevice CHANNELINSTANCE System device instance (this must exist once)
ulCommChannelCount uint32_t Number of found communication channels

pptCommChannels

PCHANNELINSTANCE*

Array of channel instances

ilrgToDsrBuffer

int

IRQ/DSR synchronization buffer number

atlrqToDsrBuffer

NETX_HANDSHAKE_ARRAY][]

Two synchronization buffers for ISR/DSR

ullrgCounter

uint32_t

IRQ counters (informational use)

pbHandshakeBlock

uint8_t*

Pointer to the handshake block

eChipType

CIFX_TOOLKIT_CHIPTYPE_E

Type of the chip. This is detected during
cifXTKitAddDevice() call.

ulSlotNumber uint32_t Slot number for cifX cards with rotary switch. This
variable can be accessed in
USER_GetFirmwareFile() /
USER_GetConfigurationFile() functions for selecting
a proper firmware.
Note: Cards without rotary switch will return 0 as
slot number

fResetActive int Indicated an active system reset. This flag is used to

synchronize handshake flag access between DSR
and DEV_DoSystemStart

Table 13: Device instance structure - Internal data

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit initialization and usage

49/117

52 CHANNELINSTANCE structure

The CHANNELINSTANCE structure is used to manage the system channel and communication
channels per device. A system channel instance is always available. Communication channel
structures are allocated during the device startup phase in the toolkit.

Structure name: CHANNELINSTANCE, P CHANNELINSTANCE

Element Type Description

pvDevicelnstance void* Pointer to the device instance belonging to this
channel

pvinitMutex void* Device is currently initializing, e.g. while doing a
reset

pbDPMChannelStart uint8_t Virtual start address of channel block

ulDPMChannelLength uint32_t Length of channel block in bytes

ulChannelNumber uint32_t Number of the communication channel (0...n)

ulBlockID uint32_t Dual port memory block number (0...7)

pvLock void* Lock for synchronizing interrupt accesses to flags

ulOpenCount uint32_t Reference counter for calls to xChannelOpen() /
xChannelClose()

flsSysDevice int 1=0 if the channel instance belong to a system
device

flsChannel int 1=0 if the channel belongs to a communication

channel

tFirmwareldent

NETX_FW_IDENTIFICATION

Firmware Identification

tSendMbx NETX_TX_MAILBOX_ T Send mailbox administration structure

tRecvMbx NETX_TX_MAILBOX_ T Receive mailbox administration structure

usHostFlags uintl6_t Copy of the last actual command flags

usNetxFlags uintl6_t Copy of the last read status flags

ulDeviceCOSFlags uint32_t Device COS flags (copy, updated when COS
Handshake is recognized)

ulDeviceCOSFlagsChang | uint32_t Bit mask of changed bits since last COS Handshake

ed

ulHostCOSFlags uint32_t Host COS flags (copy)

ptControlBlock

NETX_CONTROL_BLOCK*

Pointer to channel control block

bControlBlockBit

uint8_t

Handshake bit associated with control block

ulControlBlockSize

uint32_t

Size of the control block in bytes

ptCommonStatusBlock

NETX_COMMON_STATUS_BLOCK

*

Pointer to channel common status block

bCommonStatusBit uint8_t Handshake bit associated with Common status
block
ulCommonsStatusSize uint32_t Size of the common status block in bytes

ptExtendedStatusBlock NETX_EXTENDED_STATUS_BLOC | Pointer to channel extended status block
K*
bExtendedStatusBit uint8_t Handshake bit associated with Extended status
block
ulExtendedStatusSize uint32_t Size of the extended status block in bytes

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit initialization and usage

50/117

Structure name: CHANNELINSTANCE, P CHANNELINSTANCE

Element Type Description
bHandshakeWidth unit8_t Width of the handshake cell
ptHandshakeCell NETX_HANDSHAKE_CELL* Pointer to channel handshake cell

ahHandshakeBitEvents void*

Event handle for each handshake bit pair. (used in
interrupt mode)

pptiOInputAreas PIOINSTANCE*

Array of input areas on this channel

ullOlInputAreas uint32_t Number of input areas
pptlOOutputAreas PIOINSTANCE* Array of output areas on this channel
ullOOutputAreas uint32_t Number of Output areas
pptUserAreas PUSERINSTANCE* Array of user areas on this channel
ulUserAreas uint32_t Number of user areas

tSynch NETX_SYNC_DATA T Sync handling data

Table 14: CHANNELINSTANCE structure

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 51/117

6 Toolkit functions

The toolkit functions are divided into three different parts:

General toolkit functions
General Functions are used to implement the toolkit into an own environment.

OS abstraction for operating system independent implementation

Internal handling of the DPM expects some functionalities which are potentially operating
system or compiler depending. These functions are placed into an OS specific module to
keep the toolkit independent from such dependencies.

USER functions
User environment specific functions to adapt the user environment to the toolkit (e.g. trace
functions, file access functions, configuration information etc.).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 52/117

6.1 General Toolkit functions

These functions are used by a user application or frame work to integrate the toolkit and its
functions.

General Toolkit functions Description

CifXTKitInit Initialize the Toolkit

cifXTKitDeinit Un-initialize the Toolkit

CifXTKitAddDevice Add a device (card) to be handled the Toolkit
CifXTKitRemoveDevice Remove a device from being handled by the Toolkit
cifXTKitCyclicTimer Cyclic Toolkit function for poll devices
cifXTKitISRHandler Interrupt service handler

CifXTKitDSRHandler Deferred service routine for interrupt handling

Table 15: General Toolkit Functions

6.1.1 cifXTKitlInit

This function initializes the whole toolkit. It can also be called to re-initialize the toolkit allowing
starting over. This function must be called before using any of the toolkit functions.

Function Call
int32_t cifXTKitInit(void)

Arguments

Argument Data type Description

none

Return Values

Return Values
CIFX_NO_ERROR Toolkit initialization successful

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

53/117

6.1.2 cif XTKitDeinit

Un-initializes the toolkit. This call will remove all handled devices and frees all allocated memory.
Any access to the toolkit functions may result in an access violation if any access is made after the

toolkit is un-initialized.

Function Call
void cifXTKitDeinit(void)

Arguments

Argument Data type

Description

none

Return Values

Return Values

none

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 54/117

6.1.3 cifXTKitAddDevice

This function adds a device to be handled by the toolkit. A user application has to pass the access
name (e.g. "cifX0") and the pointer to the dual ported memory.

Informational data like physical address, interrupt number etc. can also be passed, but will only be
used on calls to information functions. The passed device instance must be correctly initialized for
the toolkit to behave properly.

Note: Because of the different handling of so called DPM based devices (comX) and PCI
based device (cifX). It is important to correctly set the fPCICard flag in the ptDevinst
structure.

Note: This function might return successfully even if underlying components has failed to

initialize. The initialization will not be aborted due to a hardware failure. The status can
be evaluated later using CIFX-API functions.

lInitError, provided in PDEVICEINSTANCE structure can be used to evaluate
possible “internal” errors.

int32_t cifXTKitAddDevice(PDEVICEINSTANCE ptDevinst)

Arguments
Argument Data type Description
ptDevinst PDEVICEINSTANCE Pointer to the user allocated device instance structure
which is being handled by the toolkit.

Return Values

Return Values
CIFX_NO_ERROR Successfully added device
CIFX_INVALID_POINTER Invalid device instance pointer passed (NULL)

CIFX_MEMORY_MAPPING_FAILED Dual ported memory was not accessible. (e.g. wrong DPM Pointer passed
or the OS_PCIRead/WriteRegisters does not correctly work on the PC card,
leaving the card in an unsafe mode after a reset)

CIFX_DRV_INIT_STATE_ERROR Card could not correctly be reset.

This could rely on an invalid DPM pointer describing accessible memory
which does not belong to the card.

The card has a bootable firmware in its FLASH and does not answer to PCI
download routines.

CIFX_FILE_OPEN_FAILED The bootloader/firmware/configuration file could not be opened. Check your
USER_GetXXX() function.

Check IInitError, in PDEVICEINSTANCE for possible internal errors if necessary (see note above).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 55/117

Example:

/* Initialize the Toolkit first */
int32_t IRet = cifXTKitInit();

iT(CIFX_NO_ERROR == IRet)

{
PDEVICEINSTANCE ptDevinstance = (PDEVICEINSTANCE)OS Memalloc(sizeof(*ptDevinstance));
0S_Memset(ptDevinstance, 0, sizeof(*ptDevinstance));

0;

NULL ;

<insert DPM pointer>;
<insert DPM size>;

ptDevinstance->fPClICard
ptDevInstance->pvOSDependent
ptDevIinstance->pbDPM
ptDevInstance->ullDPMSize
0S_Strncpy(ptDevinstance->szName,
"cifXo",
sizeof(ptDevinstance->szName));

/* Add the device to the toolkits handled device list */
IRet = cifXTKitAddDevice(ptDevinstance);

iF(CIFX_NO_ERROR == IRet)

/* From this point the CIFX APl can be used to access the device */
}else

/* Failed to add a device to the toolkit, free the previously allocated device */
free(ptDevinstance);
}
}

/* Uninitialize Toolkit at the end of the program */
/* this will removes all handled boards from the toolkit */
cifXTKitDeinit();

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

56/117

6.1.4 cifXTKitRemoveDevice

This function removes a device from the toolkit. The device is selected by passing the access
name (e.g. "cifX0"). The device instance, passed to the toolkit during initialization, will be freed
automatically by a call to OS_Memfree().

Function Call

int32_t cifXTKitRemoveDevice(

char* szBoard,
int fForceRemove)

Arguments
Argument Data type Description
szBoard char* ASCII string describing the device. This can be the initially
passed name.
fForceRemove int This parameter can be used to force the removing of the

device from the toolkit, even if any references are still
open.

ATTENTION: This can raise an access violation if an
application is still accessing the device!!!

Return Values

Return Values

CIFX_NO_ERROR

Successfully removed device

CIFX_INVALID_BOARD

Board with the given name was not found

CIFX_DEV_HW_PORT _IS_USED

There is still an open reference to the board. This error is only returned if
fForceRemove ==

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

57/117

6.1.5 CifXTKitCyclicTimer

This function must be called by the user to cyclically check device (non-irg mode) for change of
state (COS) commands from the hardware. This function processes all devices and channels to
check any pending COS handshake bit changes (only on polled devices), even when no

application is running.

Note: The recommended cycle is about 500ms or less.

Function Call

void cifXTKitRemoveDevice(void)

Arguments

Argument

Data type

Description

none

Return Values

Return Values

none

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 58/117

6.1.6 cifXTKitISRHandler

Interrupt service routine for cifX devices. This function must be called by the user if an interrupt for
a given device is signaled. On PCI busses the function is able to detect if the interrupt was issued
by the selected device.

The ISR handler function will read the hardware interrupt flags and stores the flags in the give
device instance for later processing in the cifXTKitDSRHandler().

Reading the interrupt flags also acknowledges and deletes the physical hardware interrupt.
Splitting the interrupt processing into an ISR and DSR function is done for operating systems which
do not allow to calling inter-process communication functions at the physical interrupt level.

Note: The user is responsible to pass the correct device instance for the occurred interrupt.

Function Call
int cifXTKitISRHandler(PDEVICEINSTANCE ptDevInstance

int fPClIgnoreGlobal IntFlag)
Arguments
Argument Data type Description
ptDevinstance PDEVICEINSTANCE Device instance the interrupt occurred for
fPClignoreGlobalintFlag int Ignore the global interrupt flag on PCI cards,

to detect shared interrupts. This might be
necessary if the user has already filtered out all
shared IRQs

0 = Handle global interrupt flag
1 = Ignore global interrupt flag

Return Values

Return Values
CIFX_TKIT_IRQ_OTHERDEVICE The interrupt was issued by another device on the shared PCI bus
CIFX_TKIT_IRQ_HANDLED The interrupt was handled, and does not need any further processing

CIFX_TKIT_IRQ_DSR_REQUESTED The interrupts was acknowledged, but needs further handling in a
deferred service routine. The user is expected to call a DSR in an
interruptible context on this return value.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 59/117

6.1.7 cifXTKitDSRHandler

Deferred service handler routine for cifX devices. This function must be called by the ISR handler
returned CIFX_TKIT_IRQ_DSR_REQUESTED. The DSR is expected to be interruptible and will
process the interrupt events in non-interrupt mode.

The user is responsible to pass the correct device instance for the occurred interrupt.

Function Call
void cifXTKitDSRHandler(PDEVICEINSTANCE ptDevlnstance)

Arguments
Argument Data type Description
ptDevinstance PDEVICEINSTANCE Device instance the interrupt occurred for

Return Values

Return Values

none

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 60/117

6.2 OS Abstraction

The OS Abstraction Layer is introduced to allow the toolkit to run under several operating systems,
without needing to change the toolkit components. The OS Abstraction needs to be implemented

by the user and is only included for Win32 user mode applications.

OS Abstraction

Memory Functions

OS_Memalloc

Allocate memory

OS_Memfree

Free allocated memory

OS_Memrealloc

Change size of an allocated memory block

OS_Memset Set a memory area
OS_Memcpy Copy a memory area
OS_Memcmp Compare a memory area

OS_Memmove

Move a memory area

PCI Functions

OS_ReadPClIConfig

Read PCI configuration information

OS_WritePClIConfig

Write PCI configuration information

Interrupt Functions

OS_Enablelnterrupts

Enable device interrupt

OS_Disablelnterrupts

Disable device interrupt

File Function

OS_FileOpen Open afile
OS_FileRead Read a file
OS_FileClose Close afile

Timing Function

OS_GetMilliSecCounter

Get a millisecond counter value

OS_Sleep

Suspend a process for a given time

Synchronisation Function (Critical Section)

OS_CreatelLock

Create a lock object

OS_EnterLock

Enter a locked program region

OS_Leavelock

Leave a locked program region

OS_DeleteLock

Delete a lock object

Synchronisation Function (Mutual Exclusion)

OS_CreateMutex

Create a Mutex (Mutual Exclusion) object

OS_WaitMutex

Wait for a Mutex

OS_ReleaseMutex

Release a Mutex

OS_DeleteMutex

Delete a Mutex object

Synchronisation Function (Event)

OS_CreateEvent

Create an event object

OS_SetEvent

Set an event object into a signaled state

OS_ResetEvent

Reset an event object to a none signaled state

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 61/117

OS Abstraction

OS_DeleteEvent Delete an event object

OS_WaitEvent Wait for an event to be signaled

String Functions(Mutal Exclusion)

OS_Strcmp Copy a string

OS_Strlen Get the length of a string

OS_Strncpy Compare two strings

OS_Strnicmp Compare two strings (case-insensitive)

Memory Mapping Functions

OS_MapUserPointer Map a memory region to be accessible by a user application

OS_UnmapUserPointer Unmap a previously mapped memory region
Table 16: OS Abstraction Functions

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

62/117

6.2.1 Initialization

Some operating systems must run a special initialization before any functions can be called.
Therefore the toolkit calls the following two functions during initialization / un-initialization.

6.2.1.1 OS_Init

Initialization of the operating system abstraction layer (OS layer).

Function Call
int32_t O0S_Init(void)

Arguments

Argument Data type

Description

none

Return Values

Return Values

CIFX_NO_ERROR

successfully initialized OS Layer

6.2.1.2 OS_Deinit

Un-initialization of the operating system abstraction layer (OS layer).

Function Call
void OS_Deinit(void)

Arguments

Argument Data type

Description

none

Return Values

Return Values

none

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 63/117

6.2.2 Memory operations

Memory allocation and operation differ between operating systems and even inside the operating
system, depending on the mode the application/driver is running. The memory routines are
included in the OS Abstraction to allow easy adaptation and modification.

6.2.2.1 OS_Memalloc

Memory allocation routine.

Function Call
void* 0S_Memalloc(uint32_t ulSize)

Arguments
Argument Data type Description
ulSize uint32_t Size in bytes to allocate

Return Values

A pointer to the allocated memory is returned. NULL indicates memory allocation failure.

6.2.2.2 OS_Memfree

Memory freeing function.

Function Call

void 0S_Memfree(void* pvMem)

Arguments
Argument Data type Description
pvMem void* Memory block to free

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 64/117

6.2.2.3 OS_Memrealloc

Memory resize / reallocation Function

Function Call

void* 0S_Memrealloc(void* pvMem, uint32_t ulNewSize)

Arguments
Argument Data type Description
pvMem void* Memory block to resize
ulNewSize uint32_t New size of block in bytes

Return Values

A pointer to the reallocated memory is returned. NULL indicates memory reallocation failure.

6.2.2.4 OS_Memcpy

Copy function for non-overlapping memory areas which copies one block to another.

Function Call

void 0S_Memcpy(void* pvDest,
void* pvSrc,
uint32_t ulSize)
Arguments
Argument Data type Description
pvDest void* Destination memory
pvSrc void* Source memory
ulSize uint32_t Size in bytes being copied

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

65/117

6.2.2.5 OS_Memmove

Move overlapping memory areas from one block to another.

Function Call

void 0S_Memmove(void* pvDest,
void* pvSrc,
uint32_t ulSize)
Arguments
Argument Data type Description
pvDest void* Destination memory
pvSrc void* Source memory
ulSize uint32_t Size in bytes being moved
6.2.2.6 OS_Memset

Initialize a memory block to a predefined value.

Function Call

void OS_Memset(void* pvMem,
uint8_t bFill,
uint32_t ulSize)
Arguments
Argument Data type Description
pvMem void* Memory block to initialize
bFill uint8_t Fill byte
ulSize uint32_t Size in bytes being initialized

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions

66/117

6.2.2.7 OS_Memcmp

Compare the content of two memory blocks.

Function Call

int 0S_Memcmp(void* pvBufil,
void* pvBuf2,
uint32_t ulSize)
Arguments
Argument Data type Description
pvBufl void* First compare buffer
pvBuf2 void* Second compare buffer
ulSize uint32_t Number of bytes to compare

Return Values

Return Values

0 Memory contents equal
<0 pvBufl < pvBuf2
>0 pvBufl > pvBuf2

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 67/117

6.2.3 String operations

String operations are used inside the toolkit for the board/alias name handling and also for
accessing ASCII strings inside the firmware information. The implementation should rely on ASCII /
MBCS characters.

6.2.3.1 OS_Strncpy

Copy one string into another, considering the length of the destination buffer.

Function Call

char* 0S_Strncpy(char* szDest,
const char* szSource,
uint32_t ulLen)

Arguments

Argument Data type Description

szDest char* Destination string buffer

szSource const char* Source string buffer

ulLen uint32_t Maximum length to copy

Return Values

Pointer to szDest.

6.2.3.2 OS_Strlen

Count the number of characters inside a string.

Function Call

int OS_Strlen(const char* szText)

Arguments
Argument Data type Description
szText const char* String to determine length from

Return Values

Length of string in characters.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

68/117

6.2.3.3 OS_Strcmp

Compare the content of two strings.

Function Call

int 0S_Strcmp(const char*
const char*

pszBufl,
pszBuf2)

Arguments
Argument Data type Description
pszBufl const char* First compare string
pszBuf2 const char* Second compare string

Return Values

Return Values

0 String are equal
<0 pszBufl less than pszBuf2
>0 pszBufl greater than pszBuf2

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 69/117

6.2.4 Event handling

Events are used to indicate changes in interrupt mode from the interrupt routine to the user
functions.

6.2.4.1 OS_CreateEvent

Create a new, unnamed, automatic reset event.

Function Call
void* 0S_CreateEvent(void)

Arguments

Argument Data type Description

none

Return Values

Return Values

NULL Event creation error
otherwise Handle to an event object
6.2.4.2 OS_DeleteEvent

Delete a previously created event.

Function Call
void OS_DeleteEvent(void* pvEvent)

Arguments
Argument Data type Description
pvEvent void* Event handle to delete

Return Values

Return Values

none

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

70/117

6.2.4.3 OS_SetEvent

Signal an event.

Function Call
void O0S_SetEvent(void* pvEvent)

Arguments
Argument Data type Description
pvEvent void* Event handle to signal

Return Values

Return Values

none ‘

6.2.4.4 OS_ClearEvent

Reset a signaled event.

Function Call
void OS_ResetEvent(void* pvEvent)

Arguments
Argument Data type Description
pvEvent void* Event handle to reset

Return Values

Return Values

none

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions

71/117

6.2.4.5 OS_WaitEvent

Wait for the occurrence of a given event

Function Call

uint32_t 0S_WaitEvent(

void*

pvEvent,

uint32_t ulTimeout)

Arguments
Argument Data type Description
pvEvent void* Event handle to wait for being signaled
ulTimeout uint32_t Time in ms to wait for event

Return Values

Return Values

CIFX_EVENT_SIGNALLED (0)

Event was signaled during wait

CIFX_EVENT_TIMEOUT (1)

Timeout waiting for event

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 72/117

6.2.5 File handling

Depending on the used platform, the device may have a file system or not. Depending where the
firmware and configuration files are stored, the file routines may access other devices like FLASH
etc.

6.25.1 OS_FileOpen

Open a file for reading in binary mode.

Function Call
void* OS_FileOpen(char* szFilename,
uint32_t* pulFileSize)
Arguments
Argument Data type Description
szFilename char* Name of the file to open
pulFileSize uint32_t* Returned file size in bytes of opened file
Return Values
Return Values
NULL File could not be opened
otherwise Handle to the open file

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

73/117

6.2.5.2 OS _FileClose

Close a previously opened file.

Function Call
void OS_FileClose(void* pvFile)

Arguments
Argument Data type Description
pvFile void* Handle to the file being closed

Return Values

Return Values

none

6.2.5.3 OS_FileRead

Read binary data from an open file.

Function Call

uint32_t O0S_FileRead(void* pvFile,
uint32_t ulOffset,
uint32_t ulSize,
void* pvBuffer)
Arguments
Argument Data type Description
pvFile void* Handle to the file being read from
ulOffset uint32_t Offset inside file the read should start at
ulSize uint32_t Number of bytes to be read
pvBuffer void* Buffer to place read data in

Return Values

The function returns the actual number of bytes that were read from the file.

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions

74/117

6.2.6 Synchronization / Locking / Timing

6.2.6.1 OS_CreateLock

Creates a new synchronization object (e.g. Critical Section).

Function Call

void* 0S_CreatelLock(void)

Arguments

Argument

Data type

Description

none

Return Values

Return Values

NULL

Obiject creation error

otherwise

Handle to a synchronization object

6.2.6.2 OS_DeleteLock

Delete a previously created synchronization object (e.g. Critical Section).

Function Call

void OS_DeleteLock(void* pvLock)

Arguments
Argument Data type Description
pvLock void* Synchronization object to delete

Return Values

None

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit functions 75/117

6.2.6.3 OS_EnterLock

Lock the synchronization object for the current context. This call blocks until the lock has been
acquired.

Function Call
void OS_EnterLock(void* pvLock)

Arguments
Argument Data type Description
pvLock void* Synchronization object to enter

Return Values

none

6.2.6.4 OS LeavelLock

Unlock the synchronization object for the current context.

Function Call
void O0S_LeavelLock(void* pvLock)

Arguments
Argument Data type Description
pvLock void* Synchronization object to leave

Return Values

None

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 76/117

6.2.6.5 OS_CreateMutex

Create a Mutex (Mutal Exclusion Object). Mutexes are used to prevent some functions to be
accessed re-entrant.

Function Call
void* 0S_CreateMutex (void)

Arguments

Argument Data type Description

none

Return Values

Handle to the Mutex (NULL on error).

6.2.6.6 OS_DeleteMutex

Delete a Mutex.

Function Call

void OS_CreateMutex (void* pvMutex)

Arguments
Argument Data type Description
pvMutex void* Pointer to the Mutex to delete

Return Values

None

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 77/117

6.2.6.7 OS_WaitMutex

Wait to acquire a Mutex.

Function Call
int 0S WaitMutex (void* pvMutex, uint32_t ulTimeout)

Arguments
Argument Data type Description
pvMutex void* Handle of the Mutex to wait for
ulTimeout uint32_t Timeout in ms to wait for Mutex

Return Values

None zero if Mutex is acquired successfully.

6.2.6.8 OS_ReleaseMutex

Release a previously acquired Mutex.

Function Call

void OS_ReleaseMutex (void* pvMutex)

Arguments
Argument Data type Description
pvMutex void* Handle of the Mutex to release

Return Values

None

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 78/117

6.2.6.9 OS_Sleep

Delay execution of a program by the given time in milliseconds. This call is allowed to do a task
switch, but can also be implemented as stall execution.

Function Call
void O0S_Sleep(uint32_t ulSleepTimeMs)

Arguments
Argument Data type Description
ulSleepTimeMs uint32_t Time in ms to sleep

Return Values

None

6.2.6.10 OS_GetMilliSecCounter

Retrieve the free running millisecond counter of the operating system. The resolution influences
the timeout monitoring accuracy.

Function Call
uint32_t 0S_GetMilliSecCounter(void)

Arguments

Argument Data type Description

none

Return Values

Actual value of the systems millisecond counter

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 79/117

6.2.7 PClI routines

These functions are needed, if PCI cards should be handled. The PCI cifX cards are being reset
during startup and need to have their PCI configuration registers restored after a reset.

A hardware reset will also reset the PCI core of the netX and all previously inserted PCI
configuration information is lost. Therefore the toolkit offers two functions which are called before
and after the execution of a hardware reset.

The following table shows the values which needs to be recovered:

Value Data type Description

BARO uint32_t PCI Base Address Register 0
BAR1 uint32_t PCI Base Address Register 1
BAR2 uint32_t PCI Base Address Register 2
Interrupt Line uint32_t PCI Interrupt Line Register
Command/State uint32_t PCI Command/Status Register

The PCI specification defines the PCl registers settings in a defined structure
(PCI_COMMON_CONFIG structure) and the whole structure should be stored / restored to make
sure to restore the information 1:1. The size of the structure is 256 Byte.

Note: Store / restore the complete PCl hardware configuration registers
(PCI_COMMON CONFIG structure).

Note: Make sure to restore the Command/State register as the last one and all other registers
are already valid.

6.2.7.1 OS_ReadPClIConfig

Read the actual PCI configuration registers and store them.

Function Call
void* 0S_ReadPClConfig(void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice()

Return Values

Pointer to the stored PCI registers data. Depending on the content of pvOSDependent the register
content can also be stored in this object.

Returns NULL in case the PCI registers could not be accessed/saved.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

80/117

6.2.7.2 OS_WritePCIConfig

Write a previously stored PCI configuration to the device.

Function Call

void O0S_WritePClConfig(void* pvOSDependent,
void* pvPCIConfig)
Arguments
Argument Data type Description
pvOSDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice
pvPClIConfig void* Pointer returned from OS_ReadPCIConfig

Return Values

None

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 81/117

6.2.8 Interrupt routines

These functions are needed, to allow the toolkit to enable/disable device interrupts. This function
should register and enable the devices interrupt on the operating system (e.g. connecting a
interrupt on Windows) and not for the complete CPU.

6.2.8.1 OS_Enablelnterrupts

Enable the physical interrupt for the given device.

Function Call
void OS_Enablelnterrupts(void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice()

Return Values

None

6.2.8.2 OS_Disablelnterrupts

Disable the interrupt on the given device.

Function Call
void OS_Disablelnterrupts(void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice()

Return Values

None

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 82/117

6.2.9 Memory mapping functions

The memory mapping functions are needed, if pointers are passed from the toolkit to an
application. If the driver is running in kernel mode, it may be needed to map the pointer to the
caller. This is used inside the functions which return pointers to the DPM areas.

6.2.9.1 OS_MapUserPointer

Map a pointer to be usable in the applications context.

Function Call

void* 0S_MapUserPointer(void* pvDriverMem,
uint32_t ulMemSize,
void** ppvMappedMem,
void* pvOSDependet)
Arguments
Argument Data type Description
pvDriverMem void* Pointer that is valid inside driver context
ulMemSize uint32_t Size of the memory to map
ppvMappedMem void** Returned mapped pointer
pvOsDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice()

Return Values

Handle to the mapped memory area.
NULL signals mapping failed.

This value will be returned to OS_UnmapUserPointer() to invalidate and free the mapping.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 83/117

6.2.9.2 OS_UnmapUserPointer

Unmap a previously mapped pointer.

Function Call

int OS_UnmapUserPointer(void* phMapping,
void* pvOSDependet)
Arguments
Argument Data type Description
phMapping void* Handle returned from OS_MapUserPointer()
pvOsDependent void* OS dependent object that has been passed in the device
instance during cifXTKitAddDevice()

Return Values

None zero return value indicates success.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions

84/117

6.3 USER implemented functions

Some functions must be implemented by the user to allow using of different file storages by the
toolkit. Some cards are getting their firmware from the toolkit and need the appropriate files to be

downloaded.

To allow the user to use flexible storages for these information's, several functions are predefined

and called by the toolkit.

USER Functions

USER_GetFirmwareFileCount

Get the number of firmware files to be downloaded to the
hardware.

USER_GetFirmwareFile

Get the file information for a firmware file which should be
downloaded to the hardware.

USER_GetConfigurationFileCount

Get the number of configuration files to be downloaded to the
hardware.

USER_GetConfigurationFile

Get the file information for a configuration file which should
be downloaded to the hardware.

USER_GetWarmstartParameters

Get the warm start parameters which should be downloaded
to the hardware.

USER_GetAliasName

Get the alias name for a specific device.

USER_GetBootloaderFile

Get the bootloader file for a device

USER_GetInterruptEnable

Ask if the interrupt for a specific device should be enabled.

USER_GetOSFile

Get a base firmware filename (basically an rcX without any
fieldbus stack running).

Note: This is needed for loadable module support

USER_Trace

Do debug and error trace outputs

DMA Mode only

USER_GetDMAMode

Ask if the DMA mode should be enabled / disabled on this
card

Table 17: User implementation functions

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 85/117

6.3.1 USER_GetFirmwareFileCount

Retrieve the number of firmware files to be downloaded to a specific device and channel.

Function Call
uint32_t USER_GetFirmwareFileCount(PCIFX_DEVICE_INFORMATION ptDevinfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and Channel to
get number of firmware files for

Return Values

Number of files that can be queried by USER_GetFirmwareFile().

6.3.2 USER_GetFirmwareFile

Retrieve the name of a firmware file for the given device.

Function Call

int USER_GetFirmwareFile (PCIFX_DEVICE_INFORMATION ptDevinfo
uint32_t ulldx,
PCIFX_FILE_INFORMATION ptFilelnfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and Channel to
get number of firmware files for
ulldx uint32_t Number of firmware file (0..USER_GetFirmwareFileCount
-1)
ptFilelnfo PCIFX_FILE_INFORMATION Returned file information

Return Values

None zero return value indicates success.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 86/117

6.3.3 USER_GetConfigurationFileCount

Retrieve the number of configuration files to be downloaded to a specific device and channel.

Function Call
uint32_t USER_GetConfigurationFileCount(PCIFX_DEVICE_INFORMATION ptDevIinfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and Channel to
get number of configuration files for

Return Values

Number of files that can be queried by USER_GetConfigurationFile().

6.3.4 USER_GetConfigurationFile

Retrieve the name of a configuration file for the given device.

Function Call

int USER_GetConfigurationFile (PCIFX_DEVICE_INFORMATION ptDevinfo
uint32_t ul ldx,
PCIFX_FILE_INFORMATION ptFilelnfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and Channel to
get number of configuration files for
ulldx uint32_t Number of configuration file
(0..USER_GetConfigurationFileCount - 1)
ptFilelnfo PCIFX_FILE_INFORMATION Returned file information

Return Values

None zero return value indicates success.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 87/117

6.3.5 USER_GetWarmstartParameters

Return the filename for the warm start parameters. These parameters are saved in a binary file

containing the warm start packet itself. Additionally to a header it includes also the fieldbus type
and the total length of the message.

Retrieve the name of a warmstart configuration file for the given device.

Function Call

int USER_GetWarmstartParameters(PCIFX_DEVICE_INFORMATION ptDevinfo
PCIFX_FILE_INFORMATION ptFilelnfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and
Channel to get warm start file for
ptFilelnfo PCIFX_FILE_INFORMATION Returned file information

Return Values

None zero return value indicates success.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 88/117

6.3.6 USER_GetAliasName

Return an alias name for the passed device. The alias name should be an empty string if no alias
is to be assigned.

Function Call
void USER_GetAliasName(PCIFX_DEVICE_INFORMATION ptDevinfo

uint32_t ulMaxLen,
char* szAlias)
Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information (Device/Serial number) and Channel to
get alias for
ulMaxLen uint32_t Maximum length of alias
szAlias char* Buffer to receive assigned alias

6.3.7 USER_GetBootloaderFile

Return the path and filename to the cifX bootloader that is being loaded to a device if the reset is
completed.

Function Call

void USER_GetBootloaderFile(PDEVICEINSTANCE ptDevinstance,
PCIFX_FILE_INFORMATION ptFilelnfo)

Arguments
Argument Data type Description
ptDevinstance PDEVICEINSTANCE Instance of the device requesting the bootloader.
eChipType needs to be evaluated if different netX should
be supported
ptFilelnfo PCIFX_FILE_INFORMATION Returned file information

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 89/117

6.3.8 USER_GetlInterruptEnable

This function is called from the toolkit to determine if the interrupt for the specified device should be
enabled.

Function Call
int USER_GetlInterruptEnable(PCIFX_DEVICE_INFORMATION ptDevInfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information of the device, the interrupt enable
flag is requested for

Return Values

None zero return value will enable the interrupt for the specified device.

6.3.9 USER_GetOSFile

This function is called from the toolkit to determine if a base firmware should be loaded to the
specified device. This function is needed for loadable modules (.NXO files)

Function Call

int USER_GetOSFile(PCIFX_DEVICE_INFORMATION ptDevinfo,
PCIFX_FILE_INFORMATION ptFilelnfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information
ptFilelnfo PCIFX_FILE_INFORMATION Returned file data.

Return Values

Returns 0 if no OS file is configured.

When 0 is returned it will not be possible to use loadable modules (.NXO files).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 90/117

6.3.10 USER_ Trace

The toolkit can provide additional trace information like debug and error messages to the user. The
amount of trace output is controlled through a global variable "g_ulTraceLevel".

The USER_Trace function is implemented by the user and will receive the trace level in the
ulTracelLevel argument.

Variable Data type Description

g_ulTraceLevel uint32_t Control the amount of trace output. Valid values are:
0x00000001: TRACE_LEVEL_DEBUG
0x00000002: TRACE_LEVEL_INFO
0x00000004: TRACE_LEVEL_WARNING
0x00000008: TRACE_LEVEL_ERROR

g_ulTraceLevel is evaluated using a bitwise AND

operation.
Function Call
void USER_Trace(PDEVICEINSTANCE ptDevinstance,
uint32_t ulTracelLevel,
const char* szFormat,
---)
Arguments
Argument Data type Description
ptDevinstance PDEVICEINSTANCE Device instance the trace is made for
ulTracelLevel uint32_t Trace level the message is output for
szFormat string printf() style format string
Variable argument list for printf

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit functions 91/117

6.3.11 USER_GetDMAMode

This function is called from the toolkit to determine if the DMA for the specified device should be
enabled.

Note: This function will only be called if CIFX_TOOLKIT_DMA is defined

Function Call
int USER_GetDMAMode(PCIFX_DEVICE_INFORMATION ptDevinfo)

Arguments
Argument Data type Description
ptDevinfo PCIFX_DEVICE_INFORMATION Device information of the device, the DMA mode is
requested for

Return Values

Value Definition Description

0 eDMA_MODE_LEAVE Don't change the current DMA mode on the card.

1 eDMA_MODE_ON Automatically turn DMA mode on (if supported by firmware)
2 eDMA_MODE_OFF Disable DMA during startup

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information 92/117

7 Additional information

7.1 Special interrupt handling
7.1.1 Locking DSR against ISR

Depending on the interrupt handling of the operating system, it might be necessary to lock some
code of the DSR routine against occurring device interrupts to ensure correct access to shared
data.

To enable this feature it is necessary to implement the functions OS_lIrgLock() and
OS_IrgUnlock(), and setting the following pre-processor define:

#define CIFX_TOOLKIT_ENABLE_DSR_LOCK

7.1.1.1 OS_IrgLock

This functions needs to provide a lock against the interrupt service routine of the device. The
easiest way is an IRQ lock but some operating systems provide a way to lock against a specific
interrupt

Note: This function will only be called if CIFX TOOLKIT ENABLE DSR LOCK is defined

Function Call
void OS_IlrqgLock(void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* OS dependent variable passed during
CifXTKitAddDevice()

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information 93/117

7.1.1.2 OS_IrgUnlock

This function re-enables the device's interrupt service routine.
Note: This function will only be called if CIFX_TOOLKIT_ENABLE_DSR_LOCK is defined

Function Call
void OS_IlrquUnlock(void* pvOSDependent)

Arguments
Argument Data type Description
pvOSDependent void* OS dependent variable passed during
CifXTKitAddDevice()
7.1.1.3 Sequence
Physical Interrupt ISR Handler DSR Handler
| | |
} external IRQ ! }
| |
No device } }
interrupts will be } }
d duri | |
g]ricgct(ie;seeby luSr::r;g | clear IRQ Schedule DSR }
< | | |
(] 1 |
To 0S_IrgLock
N OS_lIrgqUnlock

Figure 11: IRQ Handling with Locking

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information 94/117

7.1.2 Deferred enabling of interrupts

Depending on the operating system it might be necessary to not enable the interrupts right within
the cifXTKitAddDevice() call but at a later point.

In this case the following pre-processor define must be set:

#define CIFX_TOOLKIT_MANUAL_IRQ_ENABLE

Additionally the developer must call the functions cifXTKitEnableHWInterrupt() /
cifXTKitDisableHWInterrupt() when the driver framework is ready to handle interrupts.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information 95/117

7.2 PCl device information

The cifX/net Toolkit does not offer PCI hardware detection functions because such functions are
operating system dependent. Most common operating systems like Windows or Linux are Plug and
Play aware and using own functionalities to detect PCI devices and their resources.

Writing an own PCI detection, at least the PCI Vendor and Device IDs for card detection and
address and size of the dual port memory are necessary.

Note: The following information is only valid for netX 500/100 PCI or netX 4000 PCle based
devices

7.2.1 PCI/PCle Vendor and Device IDs

Currently Defined PCI devices:

Device Vendor ID Device ID |SUB SUB Description
Vendor ID Device ID
CIFX 50/70/80/90 i
OX15CF 0x0000 0x0000 0x0000 Standard PCI and PCle devices.
CIFX104C (RAM-based only)
0x0000 RAM-based device
netPLC 0x15CF 0x0010 Ox15CF
0x0001 FLASH-based device
0x0000 RAM-based device
netJACK 0x15CF 0x0020 0x15CF
0x0001 FLASH-based device
CIFX4000 0x15CF 0x4000 0x0000 0x0000 FLASH-based device

Table 18: Currently Defined PCI Devices

This definition and the recognition of FLASH or RAM-based is important, because the start-up
handling differs for these devices.

Definition of RAM and FLASH-based devices:

RAM-based device

A RAM-based device does not store the bootloader, Firmware and configuration files in the
device. On each power-up of such a device, all files must be downloaded to the device. A
running firmware cannot be updated while the firmware is running. The device needs a
hardware reset and a complete re-start to change the firmware. The user application is
responsible to download the necessary files.

FLASH-based device

Flash-based devices use a Flash memory to store firmware and configuration files (in the
device). A bootloader must be already on the hardware and must offer a standard Hilscher
DPM to be able to download further files.

The toolkit offers a header file containing the necessary definitions:
Hilscher Vendor/Device ID definition HilPClIDefs.h.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information

96/117

7.2.2

BAR (Base Address Register) definition

PCl based devices are offering their hardware resources via the so called PCI Configuration
space. The dual ported memory (DPM) physical address of a PCIl based netX device can be
determined by the PCI Base Address Registers (BARS).

31

1615 0

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type| Lat. Timer |Cache LineS.

Base Address Registers

Cardbus CIS Pointer

Subsystem ID Subsystem Vendor ID

Expansion ROM Base Address

Reserved Cap. Pointer

Reserved

Max Lat. Min Gnt. Interrupt Pin|Interrupt Linﬂ

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

The dual ported memory (DPM) of netX500/100 PCI devices is provided via BAR 0 (Base Address
Register 0, Offset 0x10).

Name Offset Definition Name Description

BARO 0x10 DPM_BASE_ADDRESS Dual Port Memory

BAR 1 0x14 TARGET_BASE_ADDRESS MRAM area, if supported by the hardware

BAR 2 0x18 1/0_BASE_ADDRESS Special netX feature, currently not implemented
BAR 3 0x1C -/- unused

BAR 4 0x20 -/- unused

BAR 5 0x24 -I- unused

Table 19:BAR - Base Address Register Overview

Note:

The PCI configuration space is a standard PCI functionality and described in the PCI

specification

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Additional information 97/117

7.2.3 Determine the size of PCl memory resources

Plug and Play aware operating systems are offering a driver PCI resource information by default.

Using an none Plug and Play aware operating system, the information can be determined by using
the following procedure:

1. save the current value of the "Base Address Register" (this is the physical memory address)
2. write a OXFFFFFFFF pattern to the "Base Address Register”
3. read back the content of the Base Address Register (this contains the size information)
4. restore the original value of the Base Address Register
5. compute the size of the memory region by using the previous read size information.
This is done by masking out the lowest 4 bit (for a memory BAR) and building the 2
complement of the value (invert the value and add 1).
if (val & 1)
size = (~val | 0x3) + 1;/* 1/0 space */
else
size = (~val | OxF) + 1;/* memory space */
The resulting value is the memory size in bytes.
Note: The lowest bit in an memory size information defines the type of the resource
(1 =1/O space, 1 = memory space).
The lowest 2 Bits in an I/O space and the 4 lowest Bits in a memory space are having
special meanings and should be set to 0, when calculation the size.
Note: Determining the size of a PClI memory resource region is a standard PCI functionality

and described in the PCI specification

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Additional information 98/117

7.2.4 Enable interrupt on PCl-based hardware

By default, a PCI device should only generate an interrupt if the user application (e.g. device
driver) has already registered an interrupt service routine for the specific interrupt.

Because of this definition, the interrupt of a netX based PCI device is disabled by default. To
enable the interrupt, a corresponding interrupt mask must be written to the netX "Global Register
Block".

This register block is located at the last 512 bytes of the netX dual ported memory and the
structure of the netX "Global Register Block" is defined in NetX_RegDefs.h.

The interrupt control registers (UIRQEnable_0 and ullRQEnable_1) can be found in the netX "Host
Control Block", which is a part of the netX "Global Register Block".

/ /
/*! netX Host Register Block, always located at Offset DPMSize - 0x200 */
/ /

typedef struct NETX_GLOBAL_REG_BLOCKtag

/* OxXFEOO, start of the DMA channel data (8Channels * 8DWords * 4Bytes/DWord = 0x100
Bytes) */

NETX_DMA_CHANNEL_CONFIG atDmaCtrI[NETX_MAX_DMA_CHANNELS]; /*!< Configuration Register
for all 8 DMA Channels */

/* OxFFOO, start of the netX Host control block */
volatile uint32_t reserved[47]; /*1< unused/reserved */

/* OxXFFBC, start of the defined registers */

volatile uint32_t ulPClBaseAddress; /*1< PCl Base address of 2nd Memory Window */
volatile uint32_t ulWatchDogTimeoutHost; /*!< Host Watchdog Timeout value */
volatile uint32_t ulWatchDogTrigger; /*1< Host Watchdog triggering cell */
volatile uint32_t ulWatchDogTimeoutNetx; /*!< NetX Watchdog Timeout value */
volatile uint32_t reserved2; /*1< unused/reserved */
volatile uint32_t ulCyclicTimerControl; /*1< Control of cyclic timer (repeat/single,
timer resolution, up/down) */
volatile uint32_t ulCyclicTimerStart; /*1< Timer start value */
volatile uint32_t ulSystemState; /*1< System state register */
volatile uint32_t ulHostReset; /*1< Host reset for initiating a hard reset
of the netX chip */
volatile uint32_t ullRQState O; /*1< IRQ State O */
volatile uint32_t ullRQState_1; /*1< IRQ State 1 */
volatile uint32_t reserved3; /*1< unused/reserved */
volatile uint32_t reserved4; /*1< unused/reserved */
volatile uint32_t ullRQEnable _O; /*1< IRQ enable register 0 */
volatile uint32_t ullRQEnable_1; /*1< IRQ enable register 1 */
volatile uint32_t reserved5; /*1< unused/reserved */
volatile uint32_t reserved6; /*1< unused/reserved */

3} NETX_GLOBAL_REG_BLOCK,*PNETX_GLOBAL_REG_BLOCK;

The Toolkit offers the functions cifXTKitEnableHWInterrupt() / cifXTKitDisableHWInterrupt() which
implementing the enable / disable procedure.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 99/117

8 Toolkit low-level hardware access functions

The toolkit is layered into the hardware functions (DPM functions) and the managing functions
above the hardware layer. For very small systems like 8 bit microcontrollers, without an operating
system, it is also possibly to only use the hardware functions module.

Note: These functions are intended to use with FLASH based netX hardware (comX) and can
not be used for RAM based PCI hardware (cifX)! Because of the complexity of starting
such a PCI hardware!

The following figure shows access to the DPM only with the toolkit's hardware functions.

The Generic Interrupt Handler provides access in interrupt mode. The OS Specific Functions
Module abstracts the target specific functions, which makes it easier to port. Together these three
modules build the Low Level Interface.

Overview:

Implementation CIFX/netX C-Toolkit

Device Handling | Implementation

\ / A

y A
CIFX / netX Hardware Access Functions
(Low-Level Hardware Functions)

!

CIFX / netX Dual Port Memory

A
v

Figure 12: Hardware Function Layer

The following sections explain which files are necessary to build the Low Level Interface, how to
initialize and use the Toolkit Hardware Function Module.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 100/117

8.1 Function overview

The following table shows important Toolkit Hardware Functions. For information about the unlisted
functions or more detailed information are available in the corresponding source and header files
(ciftXHWFunctions.c / ciftXHWFunctions.h).

Hardware functions

Descriptions

Status Functions-

DEV_IsReady()

Read COS flags and checks if channel is ready.

DEV_IsRunning()

Read COS flags and checks if channel is ready.

DEV_IsCommunicating()

Checks if channel is communicating.

DEV_GetHostState()

Returns the channel's application COS flags.

DEV_SetHostState()

Sets the channel's application COS flags.

DEV_BusState()

Set the channels COS bus flags and returns the resulting state.

DEV_CheckCOSFlags()

Checks and updates COS flags over all channels.

DEV_GetHandshakeBitState()

Reads handshake cells (->DEV_ReadHandshakeFlags()).

Initialization Functions-

DEV_DoChannellnit()

Performs a channel init and checks after given timeout expected state.

DEV_DoSystemStart()

Performs a system restart and checks after given timeout expected state.

Communication Functions

DEV_GetMBXState()

Returns state of device mailbox.

DEV_TransferPacket()

Transfer packet over given channel and returns received packets
(->DEV_GetPacket()/->DEV_PutPacket()).

Table 20: Toolkit hardware functions

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Toolkit low-level hardware access functions 101/117

8.2 Using the Toolkit hardware functions

This chapter shows how to use the Toolkit's Hardware Functions.

The Hardware Functions are located in the citXHWFuntions.c and cifXHWFuntions.h file and these
low level functions expecting just a filled DEVICEINSTANCE and CHANNELINSTANCE structure
to be usable.

The required toolkit files, needed to use the hardware functions are listed below:
citXHWFunctions.c
cifXInterrupt.c
cifXEndianess.h
cifXErrors.h
cifXHWFunctions.h
cifXUser.h
NetX_RegDefs.h
OS_Dependent.h
rcX_User.h
TLR_Types.h

As the Hardware Function module uses some functionality which are potentially operating system
or compiler depending, the OS Abstraction Layer must be implemented (see section OS
Abstraction on page 60).

The only user environment specific function which is used by the hardware functions module is
USER_Trace(), and thus must be implemented by the user (see section USER_Trace on page 90).

void USER _Trace (PDEVICEINSTANCE ptDevinstance, uint32_t ulTracelLevel,
const char* szFormat, ...)

As the trace level is external referenced by the Hardware Function Module, the trace level variable
must be globally defined by the user.

uint32_t g ulTracelLevel = 0;

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

102/117

8.3 Simple C application

The simple C-Source example shows how to identify a mapped DPM area (dual port memory) and
ieve the system and communication channel states

The following table demonstrates the flow of the example program. The direction to read is from
the top to the bottom. According to that the first line in the table shows the first command line out of

e example source. In case of developing a user application the table shows the right order of the
command flow.

The left row, the so called User Implemented Functions, need to be implemented by the user,
because of its target dependency. The Toolkit Hardware Functions are a set of functions which are
available in the Toolkit Hardware Function Module (see Function overview on page 100).

\

Toolkit low-level hardware access functions 103/117

C-source example:

DEVICEINSTANCE* ptDevinstance;
BYTE* pbDPM;

/* get the DPM pointer */
if (cifXTkHWFunctions_GetDPMPointer (&pbDPM, &ulDPMSize))
{

/* setup initialize structure */

/* Initialize device instance */
if (CIFX_NO _ERROR != (cifXTkHWFunctions_InitializeDataStructures(
pbDPM, ulDPMSize, ptDevinstance, 10000)))
{
return DEV_ERROR;

} else

{
CHANNEL INSTANCE* ptChan = ptDevinstance->pptCommChannels[COM_CH];
DEV_ReadHostFlags(&ptDevIinstance->tSystemDevice, 0);
DEV_ReadHostFlags(ptChan, 0);

/* check if system device is ready... */
if (IDEV_IsReady(&ptDevIinstance->tSystemDevice))
{

return DEV_ERROR;
/* Check if communication channel is ready... */
} else it (IDEV_IsReady(ptChan))
{

return DEV_ERROR;
} else /* device is ready */
{
if (IDEV_IsRunning(ptChan))
{ /* configure device */
IdentifyWarmstartPacket(ptChan,&tSndPack) ;
DEV_TransferPacket(ptChan,&tSndPack, &tRecPack,PACKSIZE, TIMEOUT,0,0);

DEV_DoChannel Init(ptDevInstance->pptCommChannels[COM_CH], TIMEOUT);
/* Waiting for netX warmstarting */
do

IRet = DEV_SetHostState(pChannel, CIFX_HOST_STATE_READY, 1000);
} whille (CIFX_DEV_NOT_RUNNING == IRet);

/* check if device is communicating */
iT(IDEV_I1sCommunicating(ptDevIinstance->pptCommChannels[COM_CH],&IRet))

/*... do anything */

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 104/117

First of all the DPM pointer needs to be retrieved. In the example the function
cifXTKHWFunctions_GetDPMPointer() returns a pointer to the DPM and the size of the
mapped area. This function needs to be customized. The pointer can be validated by
checking the DPM signature.

Note: Retrieving the DPM pointer is completely target dependant (platform, OS, ...) and
thus cifXTkHWFunctions_GetDPMPointer() is not a standard Toolkit Hardware
Function and needs to be implemented!

After retrieving the DPM pointer the DEVICEINSTANCE and CHANNELINSTANCE structure
needs to be filled. cifXTkHWFunctions_lInitializeDataStructures() sets up the
DEVICEINSTANCE structure. Information about the structure can be found in section
DEVICEINSTANCE structure on page 46.

Note: ciftXTkHWFunctions_InitializeDataStructures() is not a standard Toolkit Hardware
Function. An example implementation for the Standard DPM Layout is delivered
with the cifX Toolkit source. For custom layouts the function needs to be adapted.

Before retrieving one of the various system and channel flags, synchronize the internal
states. This can be done by reading the host flags over DEV_ReadHostFlags().

Note: First, synchronize the internal states over DEV_ReadHostFlags(). It is not possible
to retrieve flags from none existing channels (channel must be at least Ready).

To send a packet (e.g. via DEV_TransferPacket()) to a specified channel, the state of
corresponding channel must be Ready. A channel state request can be performed by
DEV_IsReady().

In case DEV_IsRunning() returns False, the configuration is missing. Now it is possible to
send a configuration via DEV_TransferPacket(). ldentifyWarmstartPacket() identifies the
running FW on channel COM_CH and configures the packet tSndPack. After sending the
configuration the channel needs to be initialized, by calling DEV_DoChannellnit().

Note: The Warmstart configuration packet is FW specific and therefore
IdentifyWarmstartPacket() is not a standard Toolkit Hardware Function, and thus
needs to be implemented!

If DEV_IsCommunicating() returns True, the input and output data are available. Assumed
the device's |0 areas are configured (see section CHANNELINSTANCE structure on page
49).

Note: General information over state changes, status flags or transferring packets can be
found in the Hilscher Gesellschaft flir Systemautomation mbH: Dual-Port Memory
Interface Manual, Revision 15, english, 201 ([2]).

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 105/117

8.4 The Toolkit C example application

The Toolkit C Example is a complete application covering the device startup and configuration. It is
located on the toolkit CD and can be used as a starting point and basis for an own implementation.

/ /
/*! Hardware function example
* \return O on success */
/ /
int32_t cifXHWSample(void)
int32_t [IDemoRet = DEV_NO_ERROR;
int32_t IRet = CIFX_NO_ERROR;
uint8_t* pbDPM = NULL; /* This pointer must be loaded to the DPM address */
uint32_t ulDPMSize = 0; /* Size of the DPM in bytes */
DEVICEINSTANCE tDevinstance; /* Global deveice data structure used by all DEV_xxx functions */

/* Get pointer to the hardware dual-port memory and check if it is available */
if (FALSE == cifXTkHWFunctions_GetDPMPointer(&pbDPM, &ulDPMSize))

/* Failed to get the hardware DPM pointer and size */

return -1;

#ifdef CIFX_TOOLKIT_HWIF
tDevinstance.pfnHwl fRead
tDevinstance.pfnHwlfiWrite

#endif

cifXHwFnRead; /* relizes read access to the system dependant DPM interface */
cifXHwFnWrite; /* relizes write access to the system dependant DPM interface */

/* Initialize the necessary data structures */
if (DEV_NO_ERROR == cifXTkHWFunctions_lInitializeDataStructures(pbDPM, ulDPMSize, &tDevinstance, 10000))
{

/* */
/* Read actual device states */
/* =

PCHANNEL INSTANCE ptSystemDevice
PCHANNEL INSTANCE ptChannel

= &tDevinstance.tSystemDevice;

= tDevinstance.pptCommChannels[COM_CHANNEL];
/* Wait for State acknowlede by the firmware */

0S_Sleep(100); /* Wait a bit */

/* read the host flags of the system device, first time to synchronize our internal status */
DEV_ReadHostFlags(ptSystemDevice, 0);

/* read the host flags of the communication channel, first time to synchronise our internal status */
DEV_ReadHostFlags(ptChannel, 0);

/* check if "system device" is ready... */
if (IDEV_IsReady(ptSystemDevice))

/* System device is not ready! */
IDemoRet = ERR_DEV_SYS_READY;

/* check if "communication channel™ is ready... */
} else if (!DEV_IsReady(ptChannel))
{

/* Communication channel is not ready! */
IDemoRet = ERR_DEV_COM_READY;

} else
/* =
/* At this point we should have a running device and a configured */
/* communication channel. */
/* Procced with "NORMAL Stack Handling! */
/* =

/* Signal Host application is available */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_READY, 1000);

/* Configure the device */

IDemoRet = cifXTkHWFunctions_ConfigureDevice(ptChannel, ptSystemDevice);
//if(DEV_NO_ERROR != IDemoRet)

// printf("Error™);

/* Initialize and activate interrupt if configured */
DEV_Initializelnterrupt (&tDevinstance);

if (DEV_NO_ERROR == IDemoRet)

/* */
/* At this point we should have a running device and a configured */
/* communication channel if no error is shown */
/* */

uint32_t ulState = 0;

/* Signal Host application is available */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_READY, 1000);

/* Switch ON the BUS communication */
IRet = DEV_BusState(ptChannel, CIFX_BUS_STATE_ON, &ulState, 3000);

/* TODO: Decide to wait until communication is available or just go to */

/* to the cyclic data handling and check the state there */

/* Wait for communication is available or do this during the cyclic program handling*/
IDemoRet = cifXTkHWFunctions_WaitUntilCommunicating(ptChannel);

/* */
if (IDemoRet == DEV_NO_ERROR)
{

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 106/117

/* device is "READY", "RUNNING" and "COMMUNICATING" */

/* Start cyclic demo with 1/0 Data-Transfer and packet data transfer */
unsigned long ulCycCnt = 0;

//uint32_t ulTriggerCount = 0;

/* Cyclic 1/0 and packet handling for “ulCycCnt"times */

while(ulCycCnt < DEMO_CYCLES)

{
/* Start and trigger watchdog function, if necessary */
//DEV_TriggerWatchdog(ptChannel, CIFX_WATCHDOG_START, &ulTriggerCount);

/* Handle 1/0 data transfer */
10Demo (ptChannel);

/* Handle rcX packet transfer */
#ifdef FIELDBUS_INDICATION_HANDLING
Fieldbus_Handlelndications(ptChannel);
#else
PacketDemo (ptChannel);
#endif

ulCycCnt++;

/* Stop watchdog function, if it was previously started */
//DEV_TriggerWatchdog(ptChannel, CIFX_WATCHDOG_STOP, &ulTriggerCount);
3

/* Switch OFF the BUS communication / dont"t wait */
IRet = DEV_BusState(ptChannel, CIFX_BUS_STATE_OFF, &ulState, 0);

/* Signal Host application is not available anymore / don"t wait */
IRet = DEV_SetHostState(ptChannel, CIFX_HOST_STATE_NOT_READY, 0);
3

/* Uninit ize interrupt */
DEV_Uninitializelnterrupt (&tDevinstance);

¥

¥

/* Cleanup all used nenory areas and pointers */
cifXTkHWFunctions_UninitializeDataStructures(&tDevinstance);

/* cifXTkHWFunctions cleanup */
cifXTkHWFunctions_FreeDPMPointer(pbDPM);

return IDemoRet;

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Toolkit low-level hardware access functions 107/117

8.5 Toolkit hardware functions in interrupt mode

It is possible to use the Toolkit Hardware Functions either in Polling Mode or in Interrupt Mode. A
Generic Interrupt Handler is integrated in the Hardware Function Module (see cifXTKitISRHandler()
and cifXTKitDSRHandler()). The source is located in the cifXInterrupt.c file.

Information about the interrupt service routines can be found under section Interrupt handling on
page 33 and the corresponding functions (ISR and DSR Handler) and section Special interrupt
handling on page 92.

Use of the toolkit's hardware functions in interrupt mode requires initialization of all interrupt
resources in the DEVICEINSTANCE and CHANNELINSTANCE structure.

DEVICEINSTANCE

Variable Description

flrgEnabled Set to true to signal irg mode enabled.

ilrgToDsrBuffer Indicates which buffer to use in atlrqToDsrBuffer.
atlrgToDsrBuffer Two synchronisation buffers (copy of handshake flags):
ullrgCounter Irg counter.

CHANNELINSTANCE

Variable Description
ahHandshakeBitEvents Array of handles for signaling differant events (e.g. bus state...).
tSynch Handles to synchronization objects.

Further it is necessary to implement additional OS functions such as locking functions or event
signaling and its complements (e.g. OS_Lock(), OS_SetEvent()...). The use of the natification
callback of 10 areas is optional (see CHANNELINSTANCE). If it is not used it is necessary to
implemet an alternative way to process the 10 Area.

Of course to use the interrupt mode, the service routines must be installed according to the target
system (platform, OS, ...).

For more detailed information about what is needed to be initialized see in cifXInterrupt.c.

Note: To use the interrupt service routines, the different handler need to be registered or
installed. The ISR control mechanism depends on the target system and need to be
implemented according to it!

For information of the resources, which need to be initialized to operate in interrupt
mode, see section DEVICEINSTANCE structure on page 46 and the in ISR routine
itself.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Error codes

108/117

9 Error codes

Error code Definition and description
0x00000000 CIFX_NO_ERROR
No error
Error code Definition and description
0x800A0001 CIFX_INVALID_POINTER
Invalid pointer (e.g. NULL) passed to driver
0x800A0002 CIFX_INVALID_BOARD
No board with the given name / index available
0x800A0003 CIFX_INVALID_CHANNEL
No channel with the given index available
0x800A0004 CIFX_INVALID_HANDLE
Invalid handle passed to driver
0x800A0005 CIFX_INVALID_PARAMETER
Invalid parameter
0x800A0006 CIFX_INVALID_COMMAND
Invalid command
0x800A0007 CIFX_INVALID_BUFFERSIZE
Invalid buffer size
0x800A0008 CIFX_INVALID_ACCESS_SIZE
Invalid access size
0x800A0009 CIFX_FUNCTION_FAILED
Function failed
0x800A000A CIFX_FILE_OPEN_FAILED
File cannot not be opened
0x800A000B CIFX_FILE_SIZE_ZERO
File size is zero
0x800A000C CIFX_FILE_LOAD_INSUFF_MEM
Insufficient memory to load file
0x800A000D CIFX_FILE_CHECKSUM_ERROR
File checksum comparison failed
0x800A000E CIFX_FILE_READ_ERROR
Error while reading file
0x800A000F CIFX_FILE_TYPE_INVALID
Invalid file type
0x800A0010 CIFX_FILE_NAME_INVALID
Invalid file name
0x800A0011 CIFX_FUNCTION_NOT_AVAILABLE
Driver function not available
0x800A0012 CIFX_BUFFER_TOO_SHORT
Given buffer too short
0x800A0013 CIFX_MEMORY_MAPPING_FAILED
Memory mapping failed
0x800A0014 CIFX_NO_MORE_ENTRIES

No more entries available

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Error codes

109/117

Error code Definition and description

0x800A0015 CIFX_CALLBACK_MODE_UNKNOWN
Unknown callback handling mode

0x800A0016 CIFX_CALLBACK_CREATE_EVENT_FAILED
Creation of callback events failed

0x800A0017 CIFX_CALLBACK_CREATE_RECV_BUFFER
Creation of callback receive buffer failed

0x800A0018 CIFX_CALLBACK_ALREADY_USED
Callback already used

0x800A0019 CIFX_CALLBACK_NOT_REGISTERED
Callback was not registered before

0x800A001A CIFX_INTERRUPT_DISABLED

Interrupt is disabled

Table 22: Error codes (OX800AXXXX)

Error code Definition and description
0x800B0001 CIFX_DRV_NOT_INITIALIZED
Driver not initialized
0x800B0002 CIFX_DRV_INIT_STATE_ERROR
Driver init state error
0x800B0003 CIFX_DRV_READ_STATE_ERROR
Driver read state error
0x800B0004 CIFX_DRV_CMD_ACTIVE
Command is active on device
0x800B0005 CIFX_DRV_DOWNLOAD_FAILED
General error during download
0x800B0006 CIFX_DRV_WRONG_DRIVER_VERSION
Wrong driver version
0x800B0030 CIFX_DRV_DRIVER_NOT_LOADED
CIFx driver is not running
0x800B0031 CIFX_DRV_INIT_ERROR
Initialization of device failed
0x800B0032 CIFX_DRV_CHANNEL_NOT_INITIALIZED
Channel not initialized (xOpenChannel not called)
0x800B0033 CIFX_DRV_IO_CONTROL_FAILED
IOControl call failed
0x800B0034 CIFX_DRV_NOT_OPENED
Driver was not opened
0x800B0040 CIFX_DRV_DOWNLOAD_STORAGE_UNKNOWN
Unknown download storage type (RAM/FLASH based) found
0x800B0041 CIFX_DRV_DOWNLOAD_FW_WRONG_CHANNEL
Channel number for a firmware download not supported
0x800B0042 CIFX_DRV_DOWNLOAD_MODULE_NO_BASEOS

Modules are not allowed without a Base OS firmware

Table 23: Error codes (0x800Bxxxx)

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Error codes

110/117

Error code Definition and description
0x800C0010 CIFX_DEV_DPM_ACCESS_ERROR
Dual port memory not accessible (board not found)
0x800C0011 CIFX_DEV_NOT_READY
Device not ready (ready-flag failed)
0x800C0012 CIFX_DEV_NOT_RUNNING
Device not running (running flag failed)
0x800C0013 CIFX_DEV_WATCHDOG_FAILED
Watchdog test failed
0x800C0015 CIFX_DEV_SYSERR
Error in handshake flags
0x800C0016 CIFX_DEV_MAILBOX_FULL
Send mailbox is full
0x800C0017 CIFX_DEV_PUT_TIMEOUT
Send packet timeout
0x800C0018 CIFX_DEV_GET_TIMEOUT
Receive packet timeout
0x800C0019 CIFX_DEV_GET_NO_PACKET
No packet available
0x800C001A CIFX_DEV_MAILBOX_TOO_SHORT
Mailbox too short
0x800C0020 CIFX_DEV_RESET_TIMEOUT
Reset command timeout
0x800C0021 CIFX_DEV_NO_COM_FLAG
COM-flag not set
0x800C0022 CIFX_DEV_EXCHANGE_FAILED
I/0 data exchange failed
0x800C0023 CIFX_DEV_EXCHANGE_TIMEOUT
I/O data exchange timeout
0x800C0024 CIFX_DEV_COM_MODE_UNKNOWN
Unknown I/O exchange mode
0x800C0025 CIFX_DEV_FUNCTION_FAILED
Device function failed
0x800C0026 CIFX_DEV_DPMSIZE_MISMATCH
DPM size differs from configuration
0x800C0027 CIFX_DEV_STATE_MODE_UNKNOWN
Unknown state mode
0x800C0028 CIFX_DEV_HW_PORT_IS_USED
Device is still accessed
0x800C0029 CIFX_DEV_CONFIG_LOCK_TIMEOUT
Configuration locking timeout
0x800C002A CIFX_DEV_CONFIG_UNLOCK_TIMEOUT
Configuration unlocking timeout
0x800C002B CIFX_DEV_HOST_STATE_SET_TIMEOUT
Set HOST state timeout
0x800C002C CIFX_DEV_HOST_STATE_CLEAR_TIMEOUT

Clear HOST state timeout

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Error codes

111/117

Error code Definition and description
0x800C002D CIFX_DEV_INITIALIZATION_TIMEOUT
Timeout during channel initialization
0x800C002E CIFX_DEV_BUS_STATE_ON_TIMEOUT
'Set Bus ON' Timeout
0x800C002F CIFX_DEV_BUS_STATE_OFF_TIMEOUT
'Set Bus OFF' Timeout
0x800C0040 CIFX_DEV_MODULE_ALREADY_RUNNING
Module already running
0x800C0041 CIFX_DEV_MODULE_ALREADY_EXISTS
Module already exists
0x800C0050 CIFX_DEV_DMA_INSUFF_BUFFER_COUNT
Number of configured DMA buffers insufficient
0x800C0051 CIFX_DEV_DMA_BUFFER_TOO_SMALL
DMA buffers size too small (min. size 256 Byte)
0x800C0052 CIFX_DEV_DMA_BUFFER_TOO_BIG
DMA buffers size too big (max. size 63.75 KByte)
0x800C0053 CIFX_DEV_DMA_BUFFER_NOT_ALIGNED
DMA buffer alignment failed (must be 256Byte)
0x800C0054 CIFX_DEV_DMA_HANSHAKEMODE_NOT_SUPPORTED
I/0O data uncontrolled handshake mode not supported
0x800C0055 CIFX_DEV_DMA_IO_AREA_NOT_SUPPORTED
I/0O area in DMA mode not supported (only area 0 possible)
0x800C0056 CIFX_DEV_DMA_STATE_ON_TIMEOUT
'Set DMA ON' Timeout
0x800C0057 CIFX_DEV_DMA_STATE_OFF_TIMEOUT
'Set DMA OFF' Timeout
0x800C0058 CIFX_DEV_SYNC_STATE_INVALID_MODE
Device is in invalid mode for this operation
0x800C0059 CIFX_DEV_SYNC_STATE_TIMEOUT

Waiting for ‘synchronization event bits' Timeout

Table 24: Error codes (0x800Cxxxx)

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

Appendix 112/117

10 Appendix
10.1 List of tables

LI Lo (I R I] o) (1Y T (o] LT PSPPI 5
Table 2: Terms, abbreviations and definitioNS............c.ciiiiiiiiii e 5
Table 3: REfEreNCeS t0 JOCUMEBNLSoiiiiiiiieiiie ittt ettt ettt ettt st e st e e st n e e sbe e e sbe e e abe e e b e e nbee e 6
Table 4: SPI ACCESS FUNCLIOMNScccuiiiiiiiiii ettt etttk b ekt e s bt skt e s be e e st e e sbe e e st bt e sbne e st b e e seneenene s 19
Table 5: TOOIKIt DIFECIOIY SITUCTUIEuiiiiiee e e e ittt e e sttt e e e e e ettt e e e e e et a et eaeeessstbeaeeeeee s s st baaeeeeeesaassnsbeeeeeeesasnnbaees 23
Table 6: Toolkit Directory Structure - CIfXTOOIKILoo it e et e e e e et e e e e e e e nneeeeeas 23
Table 7: Toolkit Directory Structure - DOCUMENTALION.ueiiiiee ittt e ettt e e e e e e e et e e e e e e e s aanbaaeeeeaaesaannnneeeeaaeeaaanneneeeas 24
Table 8: Toolkit Directory Structure - EXamples\CifXTOOIKIL...........oi e 24
Table 9: Toolkit Directory Structure - Examples\CifXTKItHWFUNCLONSuuiiiiiiiiiee e 24

LI 1o LI RO I B LY ol £ o= PP ESRTR PP 27
Table 11: DMA DUfEI SSSIGNIMENT ... iiiiiiee ettt e e e et e e e e e et e e e e e e e s s s tb e et eaeeessastbabaeeeeesaasnsbeeeaeeesannssbaees 34
Table 12: Device instance structure - User Provided datal.............ooouiiiiiieiiiiiiiiiii et e e e e e e e e e e e saneraee s 47

Table 13: Device instance structure - Internal data
Table 14: CHANNELINSTANCE structure
Table 15: General TOOIKIt FUNCLIONS ittt ettt e e e e e ettt et e e e e e e s a e be et eea e e s aanbbeeeeeeeesaannnteeeeaaeeaaannereeeas
Table 16: OS Abstraction Functions..................

Table 17: User implementation functions...........

Table 18: Currently Defined PCI Devices.........cccccceeeeeniiinnenn.

Table 19:BAR - Base Address Register Overview

Table 20: Toolkit hardware functionscccoccceirieeeiinnenn,

Table 21: Example Program Structure
Table 22: Error codes (OX800AXXXX)vvveerennnn

Table 23: Error codes (OX800BXXXX)cceeeen...

Table 24: Error COUES (OXBOOCXXXX) . -uuuvrrerteetaaauurteetaaasaaaueueeeaaasaaaussseeaaasasaansseseaeeeasaasssseasaeasaansnsssesaassaaanssneeeessaamnnsseeees

10.2 List of figures

FIGUIE 12 TOOIKIt OVEIVIEWiiiieieeiiiee e ettt ettt e e oo oottt et e e e e oo e att e et e e e e e e ntbeeeee e e e e eansbeeeeeeeeeeannsbeeeaeeeaaanntaeneaaaeasannnes
Figure 2: Block Diagram: Custom Hardware ACCESS INTEITACE.........oii i

Figure 3: Initialization Sequence of @ RAM-DASEA UEVICEuuiiiiiiiiiiiiiie et e e a e e r e e e e e s snees

Figure 4: Initialization Sequence of a Flash-based device (firmware already running)
Figure 5: Initialization Sequence of @ RAM-DASEA UEVICEuuiiiiiiiiiiiiiii et e e a e e e r e e e e e s snees
Figure 6: Initialization Sequence of a Flash-based device (Firmware already running)
Figure 7: Interrupt NaNAliNgoeeeeiii e
Figure 8: Overview custom hardware access iNterface...........ccuveeieeeiiniiiiiiieeee e
Figure 9: Calling sequence of a Default DPM Access and a Custom Function Access
Figure 10: Calling Sequence Example: xChannelGetMBXState()
Figure 11: IRQ Handling with Locking
Figure 12: Hardware Function Layer.................

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Appendix 113/117

10.3 Legal notes

Copyright
© Hilscher Gesellschatft fiir Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
lllustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft fir Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Appendix 114/117

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fission processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Appendix 115/117

Warranty

Hilscher Gesellschaft flir Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Appendix 116/117

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft fir
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

cifX/netX Toolkit | DPM
DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public © Hilscher, 2009-2019

Appendix

117/117

10.4 Contacts

Headquarters

Germany

Hilscher Gesellschaft fir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.

69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@bhilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777

E-Mail: info@hilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@bhilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnham, Gyeongdgi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-Mail: info@bhilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

cifX/netX Toolkit | DPM

DOCO090203TK11EN | Revision 11 | English | 2019-04 | Released | Public

© Hilscher, 2009-2019

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Terms, abbreviations and definitions
	1.4 References to documents
	1.5 Features
	1.6 Restrictions

	2 How to port the cifX Toolkit
	2.1 General Procedure
	2.1.1 Step-by-Step Guide - What needs to be done
	2.1.2 Additional Toolkit Functions and Options
	2.1.3 Creating an own Device Driver

	2.2 Creating an Application using the Toolkit Low-Level DPM Functions

	3 How to Access Serial DPM via SPI
	3.1 Serial DPM Interface Functions
	3.1.1 Serial DPM Interface Initialization
	3.1.2 SPI Access Functions
	3.1.2.1 OS_SpiInit
	3.1.2.2 OS_SpiAssert
	3.1.2.3 OS_SpiDeassert
	3.1.2.4 OS_SpiLock
	3.1.2.5 OS_SpiUnlock
	3.1.2.6 OS_SpiTransfer

	3.2 Example

	4 The cifX/netX Toolkit
	4.1 Directory Structure and Content
	4.1.1 cifX Toolkit CD
	4.1.2 cifXToolkit
	4.1.3 Documentation
	4.1.4 Examples\cifXToolkit
	4.1.5 Examples\cifXTkitHWFunctions

	4.2 Data Packing
	4.3 Big Endian Support
	4.4 64-bit support
	4.5 FLASH-based vs RAM-based devices
	4.6 Loadable Firmware Files
	4.6.1 Initialization process using a monolithic firmware
	4.6.1.1 Using a RAM-based device
	4.6.1.2 Using a Flash-based device

	4.6.2 Initialization process using Loadable Firmware Modules
	4.6.2.1 Using a RAM-based device
	4.6.2.2 Using a Flash-based device

	4.7 Interrupt handling
	4.8 DMA handling for I/O data transfers
	4.9 Extended parameter check of Toolkit functions
	4.10 Device time setting
	4.11 Custom hardware access interface / Serial DPM
	4.11.1 Defining and adding custom access functions
	4.11.1.1 Prototype of the Read Function (pfnHwIfRead())
	4.11.1.2 Prototype of the Write Function (pfnHwIfWrite())

	4.11.2 Example
	4.11.3 Serial DPM Access via SPI

	5 Toolkit initialization and usage
	5.1 DEVICEINSTANCE structure
	5.1.1 User definable data in the DEVICEINSTANCE structure
	5.1.2 Toolkit internal data in the DEVICEINSTANCE structure

	5.2 CHANNELINSTANCE structure

	6 Toolkit functions
	6.1 General Toolkit functions
	6.1.1 cifXTKitInit
	6.1.2 cifXTKitDeinit
	6.1.3 cifXTKitAddDevice
	6.1.4 cifXTKitRemoveDevice
	6.1.5 cifXTKitCyclicTimer
	6.1.6 cifXTKitISRHandler
	6.1.7 cifXTKitDSRHandler

	6.2 OS Abstraction
	6.2.1 Initialization
	6.2.1.1 OS_Init
	6.2.1.2 OS_Deinit

	6.2.2 Memory operations
	6.2.2.1 OS_Memalloc
	6.2.2.2 OS_Memfree
	6.2.2.3 OS_Memrealloc
	6.2.2.4 OS_Memcpy
	6.2.2.5 OS_Memmove
	6.2.2.6 OS_Memset
	6.2.2.7 OS_Memcmp

	6.2.3 String operations
	6.2.3.1 OS_Strncpy
	6.2.3.2 OS_Strlen
	6.2.3.3 OS_Strcmp

	6.2.4 Event handling
	6.2.4.1 OS_CreateEvent
	6.2.4.2 OS_DeleteEvent
	6.2.4.3 OS_SetEvent
	6.2.4.4 OS_ClearEvent
	6.2.4.5 OS_WaitEvent

	6.2.5 File handling
	6.2.5.1 OS_FileOpen
	6.2.5.2 OS_FileClose
	6.2.5.3 OS_FileRead

	6.2.6 Synchronization / Locking / Timing
	6.2.6.1 OS_CreateLock
	6.2.6.2 OS_DeleteLock
	6.2.6.3 OS_EnterLock
	6.2.6.4 OS_LeaveLock
	6.2.6.5 OS_CreateMutex
	6.2.6.6 OS_DeleteMutex
	6.2.6.7 OS_WaitMutex
	6.2.6.8 OS_ReleaseMutex
	6.2.6.9 OS_Sleep
	6.2.6.10 OS_GetMilliSecCounter

	6.2.7 PCI routines
	6.2.7.1 OS_ReadPCIConfig
	6.2.7.2 OS_WritePCIConfig

	6.2.8 Interrupt routines
	6.2.8.1 OS_EnableInterrupts
	6.2.8.2 OS_DisableInterrupts

	6.2.9 Memory mapping functions
	6.2.9.1 OS_MapUserPointer
	6.2.9.2 OS_UnmapUserPointer

	6.3 USER implemented functions
	6.3.1 USER_GetFirmwareFileCount
	6.3.2 USER_GetFirmwareFile
	6.3.3 USER_GetConfigurationFileCount
	6.3.4 USER_GetConfigurationFile
	6.3.5 USER_GetWarmstartParameters
	6.3.6 USER_GetAliasName
	6.3.7 USER_GetBootloaderFile
	6.3.8 USER_GetInterruptEnable
	6.3.9 USER_GetOSFile
	6.3.10 USER_Trace
	6.3.11 USER_GetDMAMode

	7 Additional information
	7.1 Special interrupt handling
	7.1.1 Locking DSR against ISR
	7.1.1.1 OS_IrqLock
	7.1.1.2 OS_IrqUnlock
	7.1.1.3 Sequence

	7.1.2 Deferred enabling of interrupts

	7.2 PCI device information
	7.2.1 PCI/PCIe Vendor and Device IDs
	7.2.2 BAR (Base Address Register) definition
	7.2.3 Determine the size of PCI memory resources
	7.2.4 Enable interrupt on PCI-based hardware

	8 Toolkit low-level hardware access functions
	8.1 Function overview
	8.2 Using the Toolkit hardware functions
	8.3 Simple C application
	8.4 The Toolkit C example application
	8.5 Toolkit hardware functions in interrupt mode

	9 Error codes
	10 Appendix
	10.1 List of tables
	10.2 List of figures
	10.3 Legal notes
	10.4 Contacts

