-
hilscher

COMPETENCE IN
CONMMUNICATION

Dual-Port Memory Interface Manual

netX Dual-Port Memory Interface

Hilscher Gesellchaft fur Systemautomation mbH

www.hilscher.com
DOC060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

Introduction 2/153

Table of content

1 1] 4 oo [UYox 1o] o HO SO SOUPRRPI 4
1.1 ADOUL thiS DOCUMEBNT.....cciiiiiiiiiiitiite ittt ettt s bt e e st e e s aab e e s s bt e e s anbbe e e s anbbeeeeanbbeeeennbbeeeeaneee 4
R W () o) =Y/ 1= (o SRR 4
1.3 Considerations / Prerequisites and LIMItAtioNS..........cccoooiiiiiiiiiie e 5
1.4 Terms, abbreviations and definitioNS ... 7
1.5 References t0 OCUMENEScciiiiiiiiiiiie ettt e e st e e et e e s enbbe e e s snbbeeeeaneee 8
1.6 Information and dat@ SECUILYceiieeiiiiiiieie e e e e e e e s e e e e e s e s e e e e e s snnnn e e e e e e e s annrnrneeees 8

2 DUAI-POIt MEMOTY SEIUCTUIE coieeiiiiiiieiiee e e e e sttt e e e e e e s s e e e e e e e s st ee e e e e e e s s anaabe e e e e aeeeannsetneeeeeeessnsrnneneeens 9
2.1 Block Diagram of the default Dual-Port MEemMOIY...........ucoiiiiiiiiiiiiiiiee e 11
2.2 Dual-port memory layout @Nd SIZESooiuuiiiiiieiie e a e 12

2.2. 1 VArADIE LAYOUL ..ottt ettt ettt e e e e e ettt et e e e e e e ntbeeeeea e e e aannaeseeaaeeeaannneneeaaaean 13
G T O g T VoL U= I D= 10y 1 14
2.3. 1 SYSIEM CRANNEL ..ot e ettt e e e e e et e e e e e e e st e e e e e e e e e aannneneeaaaean 14
2.3.2 HanNdshaKe Channel......... ..ot e ettt e e e e e et e e e e e e e e nneaeeaaa e s 15
2.3.3 CommuNICAtION ChANNEIcoiiiiiiiiii et e et e e s b e e nabeee s 16
AR B N o o] 1o 11 o] o IO aT- U o = PSPPSR 17
2.4 Data BIOCK DEfiNItIONSceiiiiiiiiiiiiiii ettt e e st e e s snbe e e s snbe e e e s sabeeeeans 18
2.4.1 System INfOrmMation BIOCK..........coiuiiiiiieiieiitiit et e e s e e e e e st e e e e e s s atbraeeaeeeean 18
2.4.2 Channel INformation BIOCKiiiiiiiiiiiiii ettt e et e e abee s 18
2.4.3 SYStEM CONLIOI BIOCKviiiiiiieiiiiiiit et e e e e s e e e e e s st b e e e e e e s satbraeeeaeesan 18
2.4.4 SyStemM StatUS BIOCK..........eiiiiiiiie et e e e e e e e e e e e e e e e e s 18
245 CommON CONIOI BIOCK.coiiiiiiieiiiii ettt e e e e ettt e e e e e e enbbee e e e e e e e eannnnneeaaaean 19
2.4.6 CoMMON SEAUS BIOCKeiiiiiiiiiiiiii ettt e e e ettt e e e e e s e b e e e e e e e e e annnnneeaaa e s 19
247 EXtended StAtUS BIOCKccoiiiiiiiiiiiiieee ettt e e e ettt e e e e e e e e e e e e e nnaaeeaaae s 19
P S BV - 11 o To) QS V] 1= 1 [U SUP PP 19
2.4.9 1/O DAIA ATBAS......eeiieieeeee ittt ettt ettt e ettt e b h et e e bt e R ettt b et e e e bb e e e e nte e e nnbee s 20
A T 1 1= 0 Q@1 T o T8 =T o 15 (=T g = oY PSSR 20

3 Data access and SYNCRIONIZALIONeiiiii ittt e e e e e e e e e e e e e e e e e aneeees 21
3.1 Handshake Flag naming CONVENLION............uuviiieeiiiiiiiieeie e s seeee e e e e s s s eee e e e e s snnnraneeeeee s s e nnnneees 22
3.2 System Channel - Handshake Register and FIags ...t 23
3.3 Communication Channel - Handshake Register and Flags...........ccccoiiiiiiiiiiiiii e 27
3.4 Synchronization - Handshake Register and FIags. ... 31

4 Data Transfer MECHANISIMcoiiiiii ettt et e e et be e e s abbee e e nneee 34
4.1 Non-Cyclic Data Transfer via Mailbox and Packets.............cccoiiiii e 35

O R == (ol (T AR (U o) (U = U SEPT R 37
4.1.2 Default Packet HANAIINGooiii ettt e et e e e e e e st e e e e e e e nnneeeeas 40
4.1.3 Packet Addressing Via UBDESTuviiiiiiiiiiiiiiiee ettt ettt e et e e e e e e e nntaaee s 41
4.1.4 USING UISIC AN UISICIAuiiiiiiiiiiiiiiii et e e st e e e e e s et e e e e e s e e sa b e e e e e e e eesnneaeees
4.1.5 Client/Server Mechanism
4.1.6 Packet Fragmentationccioiiiiiiiiiiiie ettt e e ettt e e e e ettt e e e e e s e et b e e e e e e e e e e e nrb e e e e e e e e e anneaeeeas
4.1.7 Packet transfer SYNCNIONIZALIONoiiiiiiiiiiiii e e e e e e e nneaeeeas 46
4.2 Cyclic Data Transfer via Input/Output Data Ar€aSc..uueiiiieiiiiiiiiiiee e e e 49
4.2.1 1/O Data EXChAnQe MOUEScooi ittt ettt e e e ettt e e e e e et e e e e e e e e nnneeeeas 50
4.2.1.1 Buffered Host Controlled MOEcooooiiiiiiiiiiiia e 52
4.2.1.2 Buffered Device Controlled MOGE.........oooo i 54
4.2.2 1/O Data Area ACCESS SYNCNIONIZALION.ccuiviiiiee ettt e e e e s e e e e e e ssnraeees 56
4.2.2.1 Synchronization in Buffered Host Controlled Modec.ccccoevviiiiiieeiiiiiiiiecee e, 57
4.2.2.2 Synchronization in Buffered Device Controlled Mode.............ccccuvveeiieeiiiiiiiienee e, 59
4.3 Change of State MechanisSm (COS)cuiieiiiiiiiieiiee e e e e e e e s s s e e e e e e s s snareeneeeeeeanns 60
4.3.1 Communication COS HaNAING.......ccuuuiiiieeiiiiiiii et e e e e e e st r e e e e e e e ssnraeees 61
4.3.2 Application COS HaNAIINGuviieiiiiiiiiiiie ettt e e e e e e e s et e e e e e s s e tntbeeeeaeeeessnraeees 62
4.3.3 Enable Flag HandlinNgeooiiioioiei ettt e e e e et e e e e e e e nane e e e e e e e e nnneeeeas 63

5 DPM Definitions / Mapping and CONTENTooiuiiiiiiiiee et ebee e enee 65
0 N B | = I Y/ F= o] o] oo TR EUPTP 65
I 2 Y51 (=1 4 I 1 =g T T PSR 68

5.2.1 System INfOrmation BIOCK..........coiuiiiiiieii it e e e e e e st e e e e e s s ataeaeeaaee s 69
5.2.2 Channel Information BIOCKeeiiiiiiii e e e e e eeneae e e e e an 79
5.2.3 System HandShaKe BIOCK..........couuiiiiiieei ettt e e e e et e e e e e e e annneneeaaaeean 86
5.2.4 System CONLIOl BIOCKooiiiiiiii ettt e ettt e e e e e e e e e e e e e annneneeaaa e s 87

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Introduction 3/153

10

5.2.5 SyStem StatusS BIOCK..........eoiiiiiiieei et e e e a e e e aeeaaa e s 89

I IV (=T (1Y, 11 o) U SUP PP 93

RS T o P T To £ g o S @4 o= U] = PR 94
5.4 Communication ChanNEl.........oocuiiiiiiii et e e e e e e e e e e e e s r e e e e e e e e nnnnrees 96
5.4.1 Channel HaNAShaKe BIOCKcc.uuviiiiieiiiiiiiii ettt e e e e e e e e st e e e e e e s s ensnnaeeeaa e s 98

5.4.2 CommMON CONLIOI BIOCK.......cciiiiiiiiiiiiiiiiiiiieieeieeieeeeeeeeeeeeeeeeeeeeeeesesesesssesssssssssesssssessssssssssssssssssrsssrsrerens 99

5.4.3 CommON STAtUS BIOCKuuiiiiiiiiiiiiiiii et e e e e s e e e e s e et e e e e e e e e nareees 101
5.4.3.1 Master State INfOrMALIONuuviiiiiiiiiiiiiiiririeierrrerrrrie e e e e e e e rr—.—————————.———————————————. 108

L A (=T o (=0] v= LU FS = o o PSPPI 110

N I O o F- Vo (= I 1Y, F= 1| Lo) PR 116

5.4.6 High Priority Input/Output Data IMage........cc.ueeiiiieei et a e e e e eneaeeeas 117

L = LYY= T V=T o A 4 T PSPPI 117

5.4.8 Input/ Output Process Data IMAQGEcooiiuiiiiiiee ittt e e e e s e e e e e st e e e e e s e e annaeees 118

TSI AN o o[- o T O g - T 1= SO PRSRR 118
System BeNavior @Nd SEIVICESccciiciiiiiiiie ettt e e s e s e e e e e e s s s e e e e e e e annnnnreeeeaeeeeanns 119
6.1 TIMING CONSIAEIALIONSeeeiiiiiiiiiiiiiii ettt e e e e et e et e e e s s aabbee e e e ae e e s e aabbbeeeeeaeeeaannbbeeeaaaaasann 119
LS =1 0 G = Yo LA (o To =Y o 1 120
6.3 HArOWAIE LEDS..... .. aa e s aaaa s aaa s s s e saasesassasssssnessssnsnsnsnnnsnnnnnnnnns 121
6.3. 1 SYSIEIM LED ...ooiiiiiiiiiiiiiiiiiii ittt ettt ettt ettt ettt ettt ettt ettt ettt ettt teeneeeeenennennnnnnnne 121

6.3.2 Communication ChanNElI LEDScuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeveeeeeeeseesesesassssesssssesesssssssssssssesssnrenens 121

L S Loyl o F= T o | T o PP PO PPPRTT 122
6.4.1 HAIOWAIE RESEL ...ceeeiiiiiiiieiiiiiieeee ettt ettt ettt eeeeeeaeeeaeeeeaeeaeseessssssssasassessssssasssssssssssssssnnssnsnnnsnnnnnns 123

B.4.2 SYSTEIM RESEL....eiiiiiiiiiiiiiiiii ittt ettt ettt ettt ettt et ettt ettt e ee et e e e et e et e et e s et e s e sttt sesenennnennnennnnnnnne 123

Lo G T = Yo o A1 = AP PP PP PPPPPPPPPPPPPRPNS 124

L A B oo F= L (IS - L AP URPRT 124

6.5 Communication ChanNEl SEIVICESccoiiiiiiiiiiii et s s e e s r e e e e e e eeeeeeeeaans 125
6.5.1 Channel INItIAliZAtIONoiiiiiiiiiiiier e e e e e e s s e e e e e s e st tr e e e e e e e e e nnrraees 125

6.5.2 Start / Stop COMMUNICALION.ciiiiiiiiite e ettt e e et e e e e e e e e e e s st e e e e aeesaatbtbaereeeseansnsreees 128

6.5.3 LoCK / UNIOCK CONFIQUIALION. ..ottt e e e e e et e e e e e e e eneaeeeas 129

SR A 1 o F= T [o 1= VAV 2= (o o [Yo RO URRTP 130

LS ST = Tod 1= AR T= T T~ 131
L 0 g o Yo 1= SRS 132
7.1 Second Stage BOOHOAUE! EITOIScuiiiiiiiiciiiiiieee e e sttt e e e s s s eeee e e e e e s s st e e e e e e e snnnnnreneeaaeeeanns 133
7.2 netX SYSIEM ErrOrs (SYSIEM)....iiiiiiiie et s s st e e e e s s s e e e e e e s s e e e e e e s snnnanreeeeeeeeeanns 134
7.3 netX System Errors (GENEIAI)........uuiiiieiiiiiciiiiet e e e sttt e e s s s e e e e e e s s st e e e e e e s s s nnnnreeeeeeeeeanns 135
4 = (] (o Yot o] IR = od Q= 4 (o] = O PRSRR 144
F Y o] o 1= o Yo L) RSP TPPTRTPPPI 145
S0 A I 11 A) T [0 =SOSR 145
S T2 I =3 o > o] 1= 145
RS T I =T - | g o] (= PP PUPPPPPRTT 147
L1 o 17T 1 SRS 151
L0 T 01 >3 153

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Introduction 4/153

1 Introduction

1.1 About this Document

This manual describes the user interface respectively the application programming interface of the
dual-port memory for netX-based products manufactured by Hilscher.

In a dual-processor system, the netX dual-port memory (DPM) is the interface between a host (e.g.
PC or microcontroller) and the netX chip. It is a shared memory area, which is accessible from the
netX side and the host side and it is used to exchange process and diagnostic data between both
systems.

The netX firmware determines the dual-port memory layout in size and content. It offers up to 8
memory areas or channels, which create the dual-port memory layout. The flexible memory
structure provides access to the netX chip with its integrated network/fieldbus controller.

The content of the individual memory channels depends on the type of the channel. System
channel and handshake channel using a fixed structure and location, while a communication
channel can provide some variable areas. The system channel can be used to obtain information
regarding type, offset and length of the variable areas.

1.2 List of revisions

Rev Date Name Revisions
14 2018-08-28 |HHE, BME | Section System Information Block: CC-Link IE Field 1 GBit/s added to Table 50.

Section System Information Block: Device classes COMX 51-CCIES, NPEX-
BP52-10 and NPEX-BP52-I0L added to Table 55.

Section Channel Information Block: Protocol classes CC-Link IE Field and
Network Services added to Table 61.

Wrong definitions of bPDInSource and bPDOutSource fixed in sections I/O Data
Area Access Synchronization and Common Status Block.

Section Channel Initialization:
Figure 18: Best practise pattern for Channellnit added.

15 2019-04-26 |HHE, ALM | Section Packet Fragmentation: Description moved to reference [1] and [3].
Document updated to new header files and definitions. Values are unchanged.
Section System Information Block: Ethernet TAP added to Table 50.

Section System Control Block: ulSystemControl field added.

Section System Status Block: HIL_SYS_STATUS_IDPM and
HIL_SYS_STATUS_APP added in Table 67 and Table 68.

Section System Information Block: Device classes 0x43, 0x44, and 0x45 and
added to Table 55.

Section Error codes updated.
16 2019-08-13 |RMA Section System Control Block updated.
Section Common Status Block: Table 85 added.

Section Reset Handling expanded.
Section Update Start added.

Table 1: List of revisions

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Introduction

5/153

1.3 Considerations / Prerequisites and Limitations

The dual-port memory (DPM) and the containing structures and definitions apply to Hilscher netX-
based products only. The dual-port memory documented here is not compatible to Hilscher AMD

or EC1-based products.

Whenever the term “netX firmware” / "protocol stack" is used throughout this manual, it refers to
ready-made firmware provided by Hilscher.

Little Endian Data Representation

The netX CPU kernel is ARM based and uses the Little Endian data representation
(LSB/MSB, known as 'Intel format'), therefore all variables, parameters and data used in this
manual corresponding to this representation.

C99-Standard-based data types

Data which are transferred between different CPU systems (host system / netX system)
needs to be fixed in sizes, therefore the C99 standard is used to define the following fixed

data types.
Data width Signed definition Unsigned definition
8 bit int8_t uint8_t
16 bit int16_t uintl6_t
32 bit int32_t uint32_t
64 bit int64_t uint64_t

Table 2: Data types

Within the rcX operating system (for netX 10/50/51/52/100/500) alternative names for these
data types may be used.

Standard Types General Definition TLR Types
int8_t INT8 TLR_INTS8
uints_t UINT8 TLR_UINTS8
int16_t INT16 TLR_INT16
uintl6_t UINT16 TLR_UINT16
int32_t INT32 TLR_INT32
uint32_t UINT32 TLR_UINT32
int64_t INT64 TLR_INT64
uint64_t UINT64 TLR_UINT64

Table 3: Data types of the rcX operating systems

Data Packing / Data Alignment

Most of the values in the DPM and the non-cyclic command packets are given as C data
structures. These C structures are partly byte packed (not always Natural Aligned) to safe
space in the DPM and the non-cyclic functions. If byte packing is not supported by the host
CPU or development environment, some of the structures are not usable and data has to be
processed manually to meet this specification and corresponding C structure cannot be used
is this case.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Introduction 6/153

Additional Terms

The terms Host, Host System, Application, Host Application and Driver are used
interchangeably to identify an external process interfacing the netX via its dual-port memory
(DPM).

Individual Implementations

A netX firmware or protocol stack may support only a subset of the structures and functions
described in this document.

Host Controlled Mode

In Host Controlled Mode, the host application initially has access to the 1/O data areas in the
DPM and can be the first to read and write data before starting a transfer between the netX
firmware and the DPM.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Introduction

7/153

1.4 Terms, abbreviations and definitions

Term Description

ACK Acknowledge

ASCII American Standard Code of Information Interchange
CMD Command

COS Change of State

DMA Direct Memory Access

DPM Dual-Port Memory

DRAM Dynamic Random Access Memory

EC1 80186 based Micro Controller

EEPROM Electrically Erasable Programmable Read Only Memory
FW Firmware

FIFO “First in, first out”, Storage Mechanism

GPIO General Purpose Input/Output Pins

HMI Human Machine Interface

Hz Hertz (1 per Second)

12C Inter-Integrated Circuit

10 Input/Output Data

LED Light Emitting Diode

LSB Least Significant Bit or Byte

MBX Mailbox

MMC Multimedia Card

ms Milliseconds, 1/1000 Second

MSB Most Significant Bit or Byte

oS Operating System

PCI Peripheral Component Interconnect

PLC Programmable Logic Controller

PIO Programmable Input/Output Pins

RAM Random Access Memory

rcX Real Time Operating System on netX

RTC Real Time Clock

S Second, 1/60 of a Minute

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus

WORD 2 Bytes, 16 Bit Entity

xC Communications Channel on the netX Chip (short form)
XPEC, xXMAC Communications Channel on the netX Chip

Table 4: Terms, abbreviations and definitions

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Introduction 8/153

1.5 References to documents

For netX 10/50/51/52/100/500-based firmware

[1] Hilscher Gesellschaft fur Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services netX 10/50/51/52/100/500, Revision 3, DOC161001API0O3EN,
English, 2019.

[2] Hilscher Gesellschaft fir Systemautomation mbH: Function Description, Second Stage
Bootloader, netX 10/50/51/52/100/500, V1.6, Revision 16, DOC070301FD16EN, English,
2018.

For netX 90/4000/4100-based firmware

[3] Hilscher Gesellschaft fur Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services netX 90/4000/4100, Revision 3, DOC190301APIO3EN, English, 2019.

For all netX-based firmware:

[4] Hilscher Gesellschaft fir Systemautomation mbH: Programming reference guide, netX Dual-
Port Memory, Revision 2, DOC160904PRGO02EN, English, 2019.

1.6 Information and data security

Please take all the usual measures for information and data security, in particular for devices with
Ethernet technology. Hilscher explicitly points out that a device with access to a public network
(Internet) must be installed behind a firewall or only be accessible via a secure connection such as
an encrypted VPN connection. Otherwise the integrity of the device, its data, the application or
system section is not safeguarded.

Hilscher can assume no warranty and no liability for damages due to neglected security measures
or incorrect installation.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure

9/153

2 Dual-Port Memory Structure

The Dual-Port Memory (DPM) is a structured memory address space in the internal SRAM
(INTRAM) of the netX chip. It is the general access to functions and data of a netX firmware. It can
be accessed from two sides, the host side and the netX side and provides mechanisms for
communication, control, and synchronization.

Host CPU

<

Data Bus >

DPM

<

Address Bus >

(

Control Lines >

netx

Figure 1: DPM Structure: DPM Connection to netX

The DPM structure is based on the general functionality of a netX firmware.

It is organized in ‘Channels’ and various ‘Data Blocks’ inside the channels. Each type of channel
provides specific functions and information necessary for working with the hardware and firmware.

Channel Channel

—

Channel

Channel Channel

Channel

System | Handshake |Communication|Communication|Communication| Communication Application

Channel (2x)

netX
Registers

Dual-Port Memory

Offset
0x0000

Figure 2: DPM Structure: Overview of DPM Memory Layout

System Channel

Offset
OXFFFF

The system channel provides information and functions affecting the entire netX hardware
like the version of the operating system or the structure of the dual-port memory and allows
basic communication via a mailbox system.

Handshake Channel

The handshake channel provides synchronization mechanism to ensure data consistency
and data access synchronization between a host system and the netX firmware.
The synchronization is based on so called ‘Handshake Register’ (e.g. bit toggle mechanism
via handshake registers) explained later in this manual. In the default layout, the handshake
registers from system, communication and application channels are packed together in this

channel.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure 10/153

Communication Channel / Application Channel

System and handshake channel are followed by one or more communication and/or
application channels. A '‘Communication Channel' provides access to a fieldbus protocol or
network and contains areas for cyclic and acyclic communication data and information. An
‘Application Channel’ can be used for any functionality that may be executed in the context of
the netX firmware and which does not correspond to a communication channel.

In the example below, two netX communication channels and one application channel are defined
where the communication channel corresponds to a protocol stack like PROFINET or DeviceNet.
In the example, one of the protocol stacks uses two XMAC/XPEC ports (xC ports).

System Handshake Communication Communication Application
Channel Channel Channel Channel Channel

Protocol Stack 1 Protocol Stack 2

—
Dual-Port Memory ~
Task R Task O
System Handshake
Task S Task P Apl_)ljglsaktlon
>
Task T Task Q
rcX Operating System %C XC «C
Port Port Port p,

v
netX Firmware

To Networks

Figure 3: DPM Structure: netX Firmware Block Diagram

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure

11/153

2.1

Block Diagram of the default Dual-Port Memory

The block diagram below gives an overview on how the netX firmware organizes the dual-port
memory if channels with default configurations are used.

Dual Port Memory

0x10000

OXF6FF

0xBAOO

0x7D00

0x4000

0x0300
0x0200

0x0000

netX Register Block

OX3FFF . .
Communication Channel
Communication
Channel2/3 G & Input Data /s
or
? Application 7 Area 0
Channel-Q/1
Handshake Channel
0x2980
System Channel
Communication / & Output Data s
? Channel 1 7 Area 0 1
0x1300
& Reserved %
0x1200
et "’ OXO1FF
(high priority)
0x11CO
Ou;put Dlata System
rea . .
(high priority) Receive Mailbox
0x1180
0x0180
& Receive v
7 Mailbox 1
System
Communication Ox0B40 Send Mailbox
Channel 0 X
0x0100
Ox02FF
v Send v System Status
7 Mailbox 1 Block
0x00CO0
0x0500 System Control
* 0x00B8 Block
0x00B0O Reserved
¢ Extended [
4 status Block 7/
0x0350 0x021C Handshake Channel 7 Chan n_el
Common 0x0218 [[_Handshake Channel 6 Information
Status Block 0x0214 Handshake Channel 5 Block
0x0310 0x0210 Handshake Channel 4
Common 0x020C Handshake Channel 3
0x0308 Control Block 0x0208 Handshake Channel 2 0x0030
. 0x0300 Reserved 0x0204] Handshake Channel 1
Handshake ” - 0x0200 Handshake Channel 0 SyStem
» Information
System Block
Channel » 0X0000

Figure 4: DPM Structure: Block Diagram Default Dual-Port Memory Layout

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure

12/153

2.2

Dual-port memory layout and sizes

The DPM address space is available in different variants:

64 Kbyte address space, which is considered as the default layout and size
(used on PCl-based hardware like CIFX 50 and CIFX 50E PC cards).

16 Kbyte address space (used by COMX modules).
8 Kbyte address space (used by COMX 10 modules).

64 KByte

16KByte

8KByte

Figure 5: DPM Structure: DPM Address Spaces

Note:
memory layout'.

If not mentioned otherwise, this document refers to the 64 Kbyte layout as the 'default

The size of a channel (system, handshake, communication and application) is always a multiple of

256 bytes.

Channel Channel Name Size Size Description

Number 64 KByte 8 KByte

Channel 0 | System Channel 512 Bytes 512 Bytes System (card) related information, state

and controls
Channel 1 | Handshake Channel 256 Bytes 256 Bytes Block of synchronization registers for all
channels

Channel 2 | Communication Channel O | Variable Variable Fieldbus protocol specific information,
n * 256 Bytes n * 256 Bytes | states and controls

Channel 3 | Communication Channel 1 | Variable Not available | Fieldbus protocol specific information,
n * 256 Bytes states and controls

Channel 4 | Communication Channel 2 | Variable Not available | Fieldbus protocol specific information,
n * 256 Bytes states and controls

Channel 5 | Communication Channel 3 | Variable Not available | Fieldbus protocol specific information,
n * 256 Bytes states and controls

Channel 6 | Application Channel O Variable Not available | Custom specific application (optional)
n * 256 Bytes

Channel 7 | Application Channel 1 Variable Not available | Custom specific application (optional)
n * 256 Bytes

N/A netX Register Block 512 Bytes Not available | netX chip specific registers

Table 5: DPM Structure: DPM Layout 8 KByte / 64 Kbyte

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure 13/153

2.2.1 Variable Layout

A netX firmware is also able to create variable DPM layouts where communication channel data
blocks are variable in size (location is changed by the size).

Such a non-default layout is indicated by the 'Default Memory Map' flag in the ‘System Status
Block’ of the 'System Channel' (in the ulSystemCOS field). If the 'Default Memory Map' flag is not
set, the user application can determine the layout of the communication channels by using so
called command packages.

A variable DPM layout has the following restrictions:

System Channel
Size, location and structure is fixed as defined in this manual

Handshake Channel
Size, location and structure is fixed as defined in this manual

Communication Channel
'‘Control Block' is mandatory, always present, structure and size is fix
‘Common Status Block' is mandatory, always present, structure and size is fix
'Send Mailbox' and 'Receive Mailbox' are mandatory but variable in size and location

‘Input Areas' and 'Output Areas' are optional, may not be present or variable in size and
location

'‘Extended Status Block' is optional, may not be present

Application Channel are not defined yet

Note: The start address of the communication channels 1 to 4 is variable and depends on the
size of preceding communication channels.
The start address of communication channel 0 is always fix because this one follows the
system and the handshake channel which are fix in location and size.

Note: The location (offset) of a data block inside a channel is not directly defined. It is implicitly
given by the channel start address and the size of the preceding blocks/channels.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure 14/153

2.3 Channel Definitions

Channels are structured memory areas in the DPM which contain data blocks. This chapter
describes the available channels and the defined data blocks inside a channel.

2.3.1 System Channel

The system channel is always the first channel in the DPM structure. It is always present, even if
no application firmware is loaded to the netX.

It is the “window” to the operating system or netX boot loader (if no firmware is loaded).

The system channel is located at offset 0x0000 of the dual-port memory and has a fixed size of
512 byte. Inside the channel, the first 256 bytes and the containing structures are also fixed while
the following 256 bytes are reserved for the mailbox system. The size of the mailbox structure is by
default 128 bytes for the send mailbox and 128 bytes for the receive mailbox.

Data Block Name Size Description

System Information Block 48 Bytes General system information (e.g. device number /
serial number etc.)

See section System Information Block on page 69.

Channel Information Block | 128 Bytes Information about available channels and necessary
to evaluate variable channel structure information.

See section Channel Information Block on page 79.

Reserved 8 Bytes Reserved, Not Used
See section System Handshake Block on page 86.

System Control Block 8 Bytes Used for passing control information to the channel.
See System Control Block on page 87.

System Status Block 64 Bytes Used to provide state information to the host system.
See section System Status Block on page 89.

Mailbox System default: 256 Bytes Send Mailbox / Receive Mailbox

(Send / Receive Mailbox) (128Byte / 128Byte) Used for non-cyclic data transfer of command data
organized in packages.

See section System Mailbox on page System
Mailbox.

Table 6: DPM Structure: System Channel - Overview

For more details about the System Channel refer to section System Channel on page 68.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure

15/153

2.3.2 Handshake Channel

The handshake channel contains the handshake registers for all channels. These registers with
their defined handshake mechanism (see section 3) allow synchronization of data accesses

between the host system and the netX.

The handshake channel always starts at DPM offset address 0x0200 and has a fixed size of 256

bytes and a fixed structure.

Data Block Name

Size

Description

Handshake Register Block

256 Byte

Cumulated handshake register.

See section Handshake Channel on page 94.

Table 7: DPM Structure: Handshake Channel - Overview

Note: Handshake register are special registers inside the DPM. They are able to generate
physical interrupts if their content changes. These registers are also used for data access
synchronization between a host and the netX system.

For more details about the Handshake Channel refer to section Handshake Channel on page 94.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure

16/153

2.3.3

Communication Channel

The communication channel area in the dual-port memory is used by a protocol stack. A protocol
stack provides network access and consumes an area of the netX dual-port memory. Each
communication channel can have the following elements.

Data Block Name Size Description
Reserved 8 Byte Reserved, not used

See section Channel Handshake Block on page 98.
Common Control Block 8 Byte Control Register

See section Common Control Block on page 99.
Common Status Block 64 Byte Protocol Stack Status Information

See section Common Status Block on page 101.
Extended Status Block 432 Byte Network Specific Information

See section Extended Status Block on page 110.

Mailbox System
(Send / Receive Mailbox)

default: 3200 Byte
(1600Byte / 1600Byte)
-> variable

Send Mailbox / Receive Mailbox
Used for non-cyclic data transfer of command data
organized in packages

See section Channel Mailbox on page 116.

1/0 Data Area (1)
(Output / Input data)

default: 128Byte
(64Byte / 64 Byte)
-> variable

Reserved for the cyclic
'High Priority' Input / Output Process Data Image

See section High Priority Input/Output Data Image on
page 117.

Reserved

default: 256 Byte
-> variable

Reserved, not used
See section Reserved Area on page 117.

1/0 Data Area (0)
(Output / Input data)

default: 11520 Byte
(5760Byte / 5760 Byte)
-> variable

Cyclic Input / Output process data image

See section Input / Output Process Data Image on page
118.

Table 8: DPM Structure: Communication Channel - Overview

The first communication channel starts always at DPM offset 0x0300 while subsequent channels
will follow without a gap in between. The start address of a following channel depends on the size
of the preceding one while the size of each channel must be a multiple of 256 bytes.

Depending on the firmware implementation, multiple communication channels could be available.

For more details about the Communication Channel refer to section Communication Channel on

page 96.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure

17/153

2.3.4 Application Channel

Depending on the implementation, an application channel may or may not be present in the dual-

port memory.

The application channel is intended to be used by OEMs if they decide to create an own netX
firmware including an additional application which needs the possibility to transfer data between

the host and the application via the DPM.

An example for such an application could be a barcode scanner application doing some data
preprocessing on netX system.

Data Block Name

Size

Description

unknown

unknown

Application Specific, not defined here

Table 9: DPM Structure: Application Channel - Overview

Application channels must follow the rules for communication channels. They will follow preceding
channels without a gap in between and the size must be a multiple of 256 bytes.

For more details about the Application Channel refer to section Application Channel on page 118.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Dual-Port Memory Structure 18/153

2.4 Data Block Definitions

'‘Data Blocks' are defined structures inside a channel and used to organize function specific data.

2.4.1 System Information Block

The System Information Block is only available in the system channel and holds general system
depending information (e.g. device number / serial number etc.).

The system info block is written by the netX firmware and read by the host application.

For more information about the content of the System Information Block see section System
Information Block on page 69.

2.4.2 Channel Information Block

The Channel Information Block is only available in the system channel and contains information
about available channels. It is needed to evaluate variable channel structure information.

The channel information block is written by the netX firmware and read by the host application.

For more information about the content of the Channel Information Block see section Channel
Information Block on page 79.

2.4.3 System Control Block

The System Control Block is only available in the system channel and used to pass control
information to the general system (e.g. operating system).

The system control block is written by the host application and read by the netX firmware.

For more information about the content and the functionality of the System Control Block see
section System Control Block on page 87.

244 System Status Block

The System Status Block is only available in the system channel and provides general system
status information like system errors, boot errors, CPU usage etc.

The block is written by the netX firmware and read by the host application.

For more information about the content of the System Status Block see section System Status
Block on page 89.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure 19/153

2.4.5 Common Control Block

The Common Control Block of a communication channel contains commands related to general
channel functions which can be activated by writing to a memory address inside the control block.
The commands vary between different types of channels, because a system channel offers other
functions than a communication channel.

A control block is always present in both system and communication channel.

For some commands, additional information from the Common Status Block is necessary to handle
the commands correctly.

The common control block is written by the host system while the netX firmware is only allowed to
read it.

For more information about the content and the functionality of the Common Control Block see
section Common Control Block on page 99.

2.4.6 Common Status Block

A Common Status Block is always present in a communication channel. It contains information
about tasks, network states and network related issues.

The common status block is written by the protocol stack and is read by the host system.

For more information about the content of the Common Status Block see section Common Status
Block on page 101.

2.4.7 Extended Status Block

The Extended Status Block is a fieldbus protocol specific information block. It is located in a
communication channel and contains specific state information about the protocol stack.

The extended status block may be present or not (usually available on most protocol stacks). It is
written by the netX firmware / protocol stack and read by the host application.

For more information about the content of the Extended Status Block see section Extended Status
Block on page 110.

2.4.8 Mailbox System

The mailbox system provides a non-cyclic data transfer mechanism for packet based commands
and confirmations. This mechanism is used to access functions like firmware download, reading
firmware information, executing resets, retrieving diagnostic information or to control functionality of
a channel by using predefined command packets.

This is always necessary if the required information is not located in the memory area of the DPM.

For more information about the functionality of a mailbox system see section Non-Cyclic Data
Transfer via Mailbox and Packets on page 35.

The position and mapping of the system mailbox is described in section System Mailbox (page 93)
while the channel mailbox description can be found in section Channel Mailbox (page 116).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Dual-Port Memory Structure 20/153

2.4.9 I/O Data Areas

I/O data areas are used to hold the cyclic process data of a fieldbus protocol stack, which consists
of input and output data exchanged between members of a fieldbus network. The areas are
dedicated to their direction and named Input Data Area and Output Data Area. To allow an
independent handling of each area, separate data access synchronization is provided for each.

These areas are only provided by a communication channel.

For more information on the functionality of the 1/0O Data Area see section Cyclic Data Transfer via
Input/Output Data Areas ona page 49.

2.5 netX Chip Register Block

The netX Register Block is an area located at the end of the 64 KByte DPM containing internal
registers of the netX chip. The availability depends on the netX firmware which must map the
registers into the DPM and of the used physical connection to the hardware because some of the
hardware does not support the necessary amount of address lines to address a 64 KByte area.

The content of the register block depends on the used netX chip type and is described in the
corresponding 'netX Technical Data Reference Guide'.

Note: It is not recommended to access the netX Register Block by a user application. It is
only mentioned here because it can be seen on the end of the DPM.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization 21/153

3 Data access and synchronization

Data access to memory areas, shared between two independent CPUs systems, needs to be
synchronized, especially if the information in the memory consists of multiple bytes.
Synchronization is necessary, because two independent CPUs are not using the same clock
source and not running with the same clock speed and therefore it is unpredictable when a CPU
access sections of the memory. A single byte access is synchronized by the memory hardware
itself (only one read/write access at a time).

This is also valid for the netX DPM and therefore a synchronization mechanism is introduced to
ensure data consistency of memory areas which are allowed to be read and written from the netX
and the host CPU.

The netX DPM synchronization mechanism is based on so called Handshake Register, controlling
the access to certain areas inside the DPM (e.g. mailbox systems and I/O data areas) while the
access to the handshake registers is strictly regulated to ensure register consistency.

Handshake Register Definition

Every channel has one 32-bit handshake register. This register is subdivided into Host Register /
Host Flags and netX Register / netX Flags. This means, they are either dedicated to the host or to
the netX.

Host Register / Host Flags

These registers and the containing flags are dedicated to the host side. Only the host is
allowed to read and write the register while the netX is only allowed to read it.

netX Register / netX Flags

The netX registers and the containing flags are dedicated to the netX side and only the netX
firmware is allowed to read and write these registers while the host is only allowed to read it.

Each channel (System Channel and Communication Channels) has its own handshake register
and in the default DPM layout, these registers are accumulated in the Handshake Channel (see
section Handshake Channel on page 94).

Three types of handshake register are defined:
System Channel - Handshake Register

Related to the System Channel are used by the host application to execute netX-wide
(system wide) commands like reset, etc.

Communication Channel - Handshake Register

Are used to synchronize cyclic data transfer via 1/0 data areas or non-cyclic data over
mailboxes in the communication channels as well as indicating status changes to the host
system

Synchronization - Handshake Register

This register is used to synchronize the host system to fieldbus specific events.

Note: Handshake registers are able to generate physical interrupts when their content is
changed.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

22/153

3.1 Handshake Flag naming convention

Handshake registers contain bits, called handshake flags, where each flag has an assigned
function or state depending if it is a member of the host or netX handshake register.

To better distinguish handshake flags, their names follow a simple pattern:

Table 10: Handshake Flag Naming Convention

Example

HSF_SEND_MBX_CMD

Member of:
Function:

Member of:
Function:

HSF

NCF
PDO_IN

Signal Type: CMD
NCF_PDO_IN_ACK

Member of:
Function:

NCF
PDO_IN

Signal Type: ACK

Member of Location Function Signal Type
[H/N] [C/S] _F_FUNCTION_ [ACK/CMD/none]
ACK = Acknowledge flag
CMD = Command flag
none = Simple Signal
Name / Function of the handshake flag
S = System Channel flag
C = Communication Channel flag
H =Host flag
N =netX flag

Host System Flags
SEND_MBX Send Mailbox
Signal Type: CMD

NCF_PDO_IN_CMD

Command Flag

NetX Communication Flags
Process Data Area O - Input

Command Flag

NetX Communication Flags
Process Data Area 0 - Input
Acknowledge Flag

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data access and synchronization 23/153

3.2 System Channel - Handshake Register and Flags

The system channel handshake registers and flags are used to synchronize the data transfer
between the netX firmware and the host application. They hold information about the status of the
operating system and can be used to execute certain commands in the firmware (e.g. a system
wide reset).

Note: Handshake registers are located in the handshake channel (see section Handshake
Channel on page 94) of the DPM.

System Channel - Handshake Register Structure

The system channel handshake register needs less synchronization flags than a communication
channel. The length of the flags is 8 bits for the netX firmware (netX Flags = bNetxFlags) and 8
bits for the host application (Host Flags = bHostFlags).

Bit 31 32 Bit Register Value (DPM Offset = 0x0200) Bit 0

Bit 7 Host Flags Bit0|Bit7 netX Flags Bito|Bit7 empty BitO[Bit7 empty Bit0

Table 11: System Channel - Handshake Register Structure

System Channel - Handshake Register / Flag Access Definition

netX System Flags (NSF)
Are read and written by netX firmware, host is only allowed to read the flags

Host System Flags (HSF)
Are read and written by the host, netX firmware is only allowed to reads these flags

System Channel - Handshake Register DPM Offset

netX System Channel Register - located at DPM address 0x0202
Host System Channel Register - located at DPM address 0x0203

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

24/153

System Channel - Handshake Flag Definition

Host System Flags (HSF) bHostFlags — Host writes, netX reads
unused, setto 0 HSF_RECV_MBX_ACK
HSF_SEND_MBX_CMD
HSF_NETX_COS_ACK
HSF_HOST_COS_CMD
HSF_BOOTSTART
HSF_RESET
5 4 3 2 1 0 HSF
I I Il Il
5 4 3 2 1 0 NSF
NSF_READY
NSF_ERROR
NSF_HOST COS_ACK
NSF_NETX_COS_CMD
NSF_SEND_MBX_ACK
unused, setto 0 NSF_RECV_MBX_CMD
netX System Flags (NSF) bNetxFlags — netX writes, Host reads

Table 12: System Channel - Handshake Register and Flag Definition

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data access and synchronization 25/153

Host System Flags (HSF) (Host = netX System)

Variable: bHostFlags

Bit | Definition Description
0 HSF_RESET Reset

The Reset flag is set by the host system to execute a system wide reset. This
forces the system to restart. All network connections are interrupted immediately
regardless of their current state.

For more details see section Reset Handling on page 122.
1 HSF_BOOTSTART Boot Start

If set during reset, the Boot-Start flag forces the netX to stay in boot loader mode;
a firmware that may reside in the context of the operating system is not started. If
cleared during reset, the operating system will start the firmware, if available.

For more details see section Boot Start on page 124.
2 HSF_HOST_COS_CMD Host Change Of State Command

The Host Change of State Command flag is set by the host system to signal a
change of its state to the netX. Details of what has changed can be found in the
ulSystemCommandCOS field of the System Control Block (see section System
Control Block on page 87).

3 HSF_NETX_COS_ACK netX Change Of State Acknowledge

The netX Change of State Acknowledge flag is set by the host system to
acknowledge the new state of the netX. This flag is used together with the netX
Change of State Command flag located in the netX System Flags.

4 HSF_SEND_MBX_CMD | Send Mailbox Command

Both the Send Mailbox Command flag and the Send Mailbox Acknowledge flag
are used together to transfer non-cyclic packages between the host system and
the netX firmware.

5 HSF_RECV_MBX_ACK Receive Mailbox Acknowledge

Both the Receive Mailbox Acknowledge flag and the Receive Mailbox Command
flag are used together to transfer non-cyclic packages between the netX and the
host system.

6-7 unused, set to zero

Table 13: System Channel - Host System Flags

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization 26/153

netX System Flag (NSF) (netX = Host System)

Variable: bNetxFlags

Bit | Definition Description

0 NSF_READY Ready
The Ready flag is set as soon as the operating system has initialized itself
properly and passed its self test. When the flag is set, the netX is ready to accept
packets via the system mailbox. If cleared, the netX does not accept any packets.

1 NSF_ERROR Error
The Error flag is set when the netX has detected an internal error condition. This is
considered to be a fatal error and an error code, helping to identify the issue, is
placed in the ulSystemError field of the System Status Block (see section
System Status Block on page 89).

2 NSF_HOST_COS_ACK Host Change Of State Acknowledge
The Host Change of State Acknowledge flag is set when the netX acknowledges a
command from the host system. This flag is used together with the Host Change
of State Command flag in the Host System Flags.

3 NSF_NETX_COS_CMD netX Change Of State Command
The netX Change of State Command flag is set if the netX signals a change of its
state to the host system. Details of what has changed can be found in the
ul SystemCOS variable in the System Status Block (see section System Status
Block on page 89).

4 NSF_SEND_MBX_ACK Send Mailbox Acknowledge
Both the Send Mailbox Acknowledge flag and the Send Mailbox Command flag
are used together to transfer non-cyclic packages between the host system and
the netX.

5 NSF_RECV_MBX_CMD Receive Mailbox Command
Both the Receive Mailbox Command flag and the Receive Mailbox Acknowledge
flag are used together to transfer non-cyclic packages between the netX and the
host system.

6-7 unused, set to zero

Table 14: System Channel - netX System Flags

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization 27/153

3.3 Communication Channel - Handshake Register and Flags

The channel handshake registers and flags are used to control data synchronization of the mailbox
system and of the process data image. They are also used to indicate the status of the protocol
stack and to execute commands in the protocol stack (e.g. reset of a channel).

Note: Handshake registers are located in the Handshake Channel (see section Handshake
Channel on page 94) of the DPM.

Communication Channel - Handshake Register Structure

The communication channel handshake register defines 16 bits for the netX firmware (netX Flags
= usNetxFlags) and 16 bits for the host application (Host Flags = usHostFlags).

A netX firmware supports up to 4 communication channels, numerated by an index from 0 to 3 with
the same structure.

Communication Channel - Handshake Register Structure

Bit 31 32 Bit Register Value Bit0

Bit 15 Host Flags Bit O |Bit 15 netX Flags Bit O

Table 15: Communication Channel - Handshake Register Structure

Communication Channel - Handshake Register / Flag Access Definition

netX Communication Flags (NCF)
Are read and written by the netX firmware, host is only allowed to read the flags

Host Communication Flags (HCF)
Are read and written by the host, netX firmware is only allowed to read the flags

Communication Channel - Handshake Register DPM Offset

netX Communication Channel O register - located at DPM address 0x0208

Host Communication Channel O register - located at DPM address 0x020A

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization 28/153

Communication Channel - Handshake Flag Definition

Host Communication Flags (HCF) usHostFlags — Host writes, netX reads
unused, set to zero HCF_PD1_IN_ACK (not supported yet)
HCF_PD1_OUT_CMD (not supported yet)

HCF_PDO_IN_ACK
HCF_PDO_OUT_CMD
HCF_RECV_MBX_ACK
HCF_SEND_MBX_CMD
HCF_NETX_COS_ACK
HCF_HOST_COS_CMD

unused
9 8 7 6 51|41 3 2 1 0 HCF
gl
9 8 7 6 5 4 3 2 1 0 NCF
NCF_COMMUNICATING

NCF_ERROR
NCF_HOST_COS_ACK
NCF_NETX_COS_CMD
NCF_SEND_MBX_ACK
NCF_RECV_MBX_CMD
NCF_PDO_OUT_ACK

NCF_PDO_IN_CMD

NCF_PD1_OUT_ACK (not supported yet)

unused, set to zero NCF_PD1_IN_CMD (not supported yet)

netX Communication Flags (NCF) usNetXFlags — netX writes, Host reads

Table 16: Communication Channel - Handshake Register and Flag Definition

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

29/153

Host Communication Flags (HCF) (Application = netX System)

Variable: usHostFlags

Bit Definition

Description

0,1 undefined

unused, setto 0

2 HCF_HOST_COS_CMD

Host Change Of State Command

The HCF_HOST_COS_CMD flag is used to signal a change in the state of the
host application. The new state is set in the ulApplicationCOS variable in
the Common Control Block (see section Common Control Block on page 99).
The protocol stack has acknowledged the processing of the new state by
toggling the NCF_HOST_COS_ACK flag. At initialization time, this flag is
cleared.

3 HCF_NETX_COS_ACK

Host Change Of State Acknowledge

The HCF_NETX_COS_ACK flag is used by host applications to indicate that
the new state of the protocol stack has been read. At initialization time, this flag
is cleared.

4 HCF_SEND_MBX_CMD

Send Mailbox Command

Both flags HCF_SEND_MBX_CMD and NCF_SEND_MBX_ACK are used
together to transfer non-cyclic packets between the application and the protocol
stack. At initialization time, this flag is cleared.

5 HCF_RECV_MBX_ACK

Receive Mailbox Acknowledge

Both flags HCF_RECV_MBX_ACK and NCF_RECV_MBX_CMD are used
together to transfer non-cyclic packets between the protocol stack and the
application. At initialization time, this flag is cleared.

6 HCF_PDO_OUT_CMD

Process Data 0 Out Command

Both the HCF_PDO_OUT_CMD flag and the NCF_PDO0_OUT_ACK flag are
used together to transfer cyclic output data from the application to the protocol
stack. At initialization time, this flag may be set, depending on the data
exchange mode.

7 HCF_PDO_IN_ACK

Process Data 0 In Acknowledge

Both flags HCF_PDO_IN_ACK and NCF_PDO_IN_CMD flag are used together
to transfer cyclic input data from the protocol stack to the application. At
initialization time, this flag may be set, depending on the data exchange mode.

8 HCF_PD1_OUT_CMD

Process Data 1 Out Command (not supported yet)

Both flags HCF_PD1_OUT_CMD and NCF_PD1_OUT_ACK are used together
to transfer cyclic output data from the application to the protocol stack.

9 HCF_PD1_IN_ACK

Process Data 1 In Acknowledge (not supported yet)

Both the HCF_PD1_IN_ACK flag and the NCF_PD1_IN_CMD flag are used
together to transfer cyclic input data from the protocol stack to the application.

10-15

Reserved, setto 0

Table 17: Communication Channel - Host Communication Flags

netX Dual-Port Memory Interface | Dual-
DOCO060302DPM16EN | Revision 16 | E

Port Memory Interface Manual
nglish | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

30/153

netX Communication Flags (NCF) (netX = Application)

Variable: usNetXFlags

Bit Definition Description

0 NCF_COMMUNICATING | Communicating
NCF_COMMUNICATING is set if the protocol stack has successfully opened a
connection to at least ONE of the configured network slaves (for master
protocol stacks), respectively has an open connection to the network master
(for slave protocol stacks).
If cleared, the input data should not be evaluated, because it may be invalid,
old or both. At initialization time, this flag is cleared.

1 NCF_ERROR Error
If set, NCF_ERROR signals an error condition that is reported by the protocol
stack. The corresponding error code is placed in the
ulCommunicationError field of the Common Status Block (see section
Common Status Block on page 101).
At initialization time, this flag is cleared.

2 NCF_HOST_COS_ACK Host Change Of State Acknowledge
The NCF_HOST_COS_ACK flag is used by the protocol stack indicating that
the new state of the host application has been read.
At initialization time, this flag is cleared.

3 NCF_NETX_COS_CMD | netX Change Of State Command
The NCF_NETX_COS_CMD flag is used to signal a change in the state of the
protocol stack. The new state is set in the ulCommunicationCOS field in the
Common Status Block (see section Common Status Block on page 101). If the
host application has read the new protocol state, it has to acknowledge it by
toggling the HCF_NETX_COS_ACK flag.
At initialization time, this flag is cleared.

4 NCF_SEND_MBX_ACK | Send Mailbox Acknowledge
Both flags NCF_SEND_MBX_ACK and HCF_SEND_MBX_CMD are used
together to transfer non-cyclic packets between the protocol stack and the
application. At initialization time, this flag is cleared.

5 NCF_RECV_MBX_CMD | Receive Mailbox Command
Both flags NCF_RECV_MBX_CMD and HCF_RECV_MBX_ACK flag are used
together to transfer non-cyclic packets between the application and the
protocol stack. At initialization time, this flag is cleared.

6 NCF_PDO_OUT_ACK Process Data 0 Out Acknowledge
Both flags NCF_PD0O_OUT_ACK and HCF_PDO0_OUT_CMD are used together
to transfer cyclic output data from the application to the protocol stack. At
initialization time, this flag may be set, depending on the data exchange mode.

7 NCF_PDO_IN_CMD Process Data 0 In Command
Both flags NCF_PDO_IN_CMD and the HCF_PDO_IN_ACK are used together
to transfer cyclic input data from the protocol stack to the application. At
initialization time, this flag may be set, depending on the data exchange mode.

8 NCF_PD1 OUT_ACK Process Data 1 Out Acknowledge (not supported yet)
NCF_PD1_OUT_ACK and HCF_PD1_OUT_CMD are used together to transfer
cyclic output data from the application to the protocol stack.

9 NCF_PD1_IN_CMD Process Data 1 In Command (not supported yet)
NCF_PD1_IN_CMD and HCF_PD1_IN_ACK are used together to transfer
cyclic input data from the protocol stack to the application.

10-15 reserved, set to zero

Table 18: Communication Channel - netX Communication Flags

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization 31/153

3.4 Synchronization - Handshake Register and Flags

The synchronization handshake register is a special register located in the handshake channel
used for fieldbus specific synchronization events.

Synchronization is only available if the fieldbus system supports specific synchronization and it
must be configured within the fieldbus configuration.

Note: The fieldbus specific synchronization register is located in the Handshake Channel (see
section Handshake Channel on pabe 94) at Handshake Register 1.

Synchronization - Handshake Register Structure

The synchronization handshake register defines 16 bits for the netX firmware (netX Flags =
usNSyncFlags) and 16 bits for the host application (Host Flags = usHsyncFlags).

Each bit in the synchronization has a fix assignment to one of the possible 4 communication
channels starting with bit O for communication channel O.

Synchronization - Handshake Register Layout

Bit 31 32 Bit Register Value (DPM Offset = 0x0204) Bit 0

Bit 15 Host Flags Bit O |Bit 15 netX Flags Bit O

Table 19: Synchronization - Handshake Register Structure

Synchronization - Handshake Register / Flag Access Definition

netX Synchronization Flags (NCFSYNC)
Are read and written by the netX firmware, host is only allowed to read the flags

Host Synchronization Flags (HCFSYNC)
Are read and written by the host, netX firmware is only allowed to read the flags

Synchronization - Handshake Register DPM Offset

netX Synchronization Register -> located at DPM address 0x0204
Host Synchronization Register -> located at DPM address 0x0206

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

32/153

Synchronization - Handshake Flag Definition

Host Synchronization Flags (HSYNCF)

usHSyncFlags — Host writes, netX reads

netX Synchronization Flags (NSYNCF)

unused, set to zero HSYNCF_CH4
HSYNCF_CH2
HSYNCF_CH1
HSYNCF_CHO
3 2 1 0 HSYNC
[| I
3 2 1 0 NSYNC
NSYNCF_CHO
NSYNCF_CH1
NSYNCF_CH2
unused, set to zero NSYNCF_CH3

usNSyncFlags — netX writes, Host reads

Table 20: Synchronization - Handshake Register and Flag Definition

Host Synchronization (HSYNCF) (Application = netX System)

Variable: usHSyncFlags (DPM offset 0x206)

Bit Definition Description

0 HSYNCF_CHO Fieldbus specific synchronization flags:

1 HSYNCF_CH1 Used to signal synchronization command events to the netX protocol stack or
> HSYNCF_CH2 to acknowledge a netX synchronization command event.

3 HSYNCF_CH3 Each flag is fixed communication channel assignment.

4-15 Reserved, setto 0

Table 21: Synchronization - Host Synchronization Flags

netX Synchronization Flags (NSYNC) (netX = Application)

Variable: USNSyncFlags (DPM offset 0x204)

Bit Definition Description

0 NSYNCF_CHO Fieldbus specific synchronization flags:

1 NSYNCF_CH1 Used to signal synchronization command events to the host application or to
> NSYNCF_CH2 acknowledge a host synchronization command event.

3 NSYNCF_CH3 Each flag is fixed communication channel assignment

4-15 Reserved, setto 0

Table 22: Synchronization - netX Synchronization Flags

Note:

The complete description of synchronization handling is located in an own manual
(netX 10 Synchronization Manual).
Consult this manual on how to work with synchronization events.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data access and synchronization

33/153

Synchronization Information - Common Status Block

Additional information about the synchronization, like the sync source, sync handshake mode and
the sync error counter, is located in the Common Status Block of the communication channel.

Type Variable Description
uint8_t bErrorSyncCnt Number of synchronization handshake errors
Depending on the configuration the error counter is used if the sync
information could not be updated because of a missing acknowledgement.
uint8_t bSyncHskMode Synchronization Handshake Mode
Configured mode of the synchronization (host controlled / device
controlled)
uint8_t bSyncSource Synchronization Source
Definition of the sync source (bus cycle / hardware trigger etc.)

Table 23: Synchronization - Synchronization Information

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 34/153

4 Data Transfer Mechanism
The DPM, respectively the netX firmware, provides several data transfer mechanisms and
synchronization methods depending on the data areas used for the transfer.
The netX firmware offers several general methods to exchange data with it.
Non-Cyclic data transfer via Mailbox and Packets

Non-cyclic data is binary data streams named Packets. A packet is a structure which
consists of a header with general administration information (command / length / source /
destination etc) and a data area. The mailbox system contains two memory areas used to
exchange packets between the host and the netX device.

Cyclic data transfer via Input/Output Data Areas

Cyclic data is the fieldbus protocol stacks input and output data which is cyclically exchanged
between members of a fieldbus network.

Change Of State

Used to signal state changes and commands between the host application and a
communication channel.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 35/153

4.1 Non-Cyclic Data Transfer via Mailbox and Packets

Mailboxes are data areas located in a channel and part of a Mailbox System. A mailbox system
consists of two areas named Receive Mailbox and Send Mailbox (from the view of the host
application) which are dedicated to a transfer direction and used to transfer Packets between the
host program and the netX firmware, while packets itself describing the data which are transferred.

Each of the area owns a separate data access synchronization allowing an independent handling.

Mailbox System

Host Application

Send Mailbox Receive Mailbox

netX Firmware

Figure 6: Packets: Mailbox System Overview

Mailbox System

Send Mailbox (System / Communication Channel)
Packet transfer from host system to netX firmware

Receive Mailbox (System / Communication Channel)
Packet transfer from netX firmware to host system

Both Send and Receive Mailboxes are structured into a counter, for tracking the number of active
packets and a data area which holds the packet data.

Mailbox Structure (System Channel):

/ /

/*1 System send packet mailbox (Size 128 Byte) */

/ /

typedef _ HIL_PACKED PRE struct HIL_DPM_SYSTEM_SEND MAILBOX_ Ttag
uintl6_t usPackagesAccepted; /*1< Number of packages that can be accepted */
uintl6_t usReserved; /*1< Reserved */
uint8_t abSendMbx[HIL_DPM_SYSTEM_MAILBOX_MIN_SIZE]; /*1< Send mailbox packet buffer */

} _ HIL _PACKED_POST HIL_DPM_SYSTEM SEND_MAILBOX_T;

/ /

/*1 System receive packet mailbox (Size 128 Byte) */

/ /

typedef _ HIL_PACKED_PRE struct HIL_DPM_SYSTEM_RECV_MAILBOX_ Ttag

{
uintl6_t usWaitingPackages; /*1< Number of packages waiting to be processed */
uintl6_t usReserved; /*1< Reserved */
uint8_t abRecvMbx[HIL_DPM_SYSTEM_MAILBOX_MIN_SIZE]; /*1< Receive mailbox packet buffer */

} _ HIL_PACKED_POST HIL_DPM_SYSTEM_RECV_MAILBOX_T;

Note: The mailbox structure of a Communication Channel corresponds to the structure of a

System Channel, except the user data area size is different.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 36/153

Mailbox Data Buffer Size

Channel Definition Size [bytes]
System Channel NETX_SYSTEM_MAILBOX_MIN_SIZE 124
Communication Channel NETX_CHANNEL_MAILBOX_SIZE 1596

Table 24: Mailbox Data Buffer Size

Only one packet can be placed into a mailbox at a time (abSendMbx[] / abRecvMbx[]), while the
counter in the send mailbox tracks the amount of packets acceptable by the netX firmware and the
counter in the receive mailbox tracks the amount of packets waiting in the receive packet queue of
the firmware.

Host | DPM | netx
| |
| |
- | - |

o Packet | Recei\;MaiIbox | Send Packet Queue

— | — |
% > —>

B Packet ! Send;ailbox ! Receive Packet Queue

Figure 7: Data Transfer Mechanism: Mailbox Packet Exchange

Note: Each packet will occupy a piece of memory inside the netX firmware. Therefore the
amount of concurrent packages is limited by the firmware (default: 16).

The netX firmware stores packets into internal memory segments organized in send and receive
gueues, where the size of the queues is limited.

If the internal packet queues are getting full, the firmware is not able to accept further packets from
the send mailbox. This is because each send packet will usually be answered by the netX
firmware, which creates a corresponding confirmation packet and stores the answers into the
receive packet queue (to be send later on to the host application). In other words, each command
packet sent to the firmware generates a confirmation packet which must be read by the host
application.

Therefore, if non-cyclic data transfer is used, it is strongly recommended to empty the receive
mailbox frequently, otherwise the sending of packets can be influenced.

Access to the mailboxes is synchronized by dedicated Handshake-Register-Flags (see Handshake
Registers), signaling the state of a mailbox, which can be either empty or full.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

37/153

4.1.1

Packet structure

Packets are asynchronous commands/confirmations which can be exchanged with the firmware. A
packet is a data structure containing a Packet header holding global command/confirmation,
routing and handling information, followed by a User Data Area containing the packet-specific data.

The structure HIL_PACKET_T is the general structure of a packet.

Area Variable / Type Value / Range Description
Element
Header ulDest uint32_t 0 ... OXFFFFFFFF Destination Address / Handle
(tHead) ulSrc uint32_t 0 ... OXFFFFFFFF Source Address / Handle
ulDestld uint32_t 0 ... OXFFFFFFFF Destination Identifier
ulSrcld uint32_t 0 ... OXFFFFFFFF Source Identifier
ulLen uint32_t 0 ... max.packet data size Packet Data Length (in Byte)
ulld uint32_t 0 ... OXFFFFFFFF Packet Identifier
ulSta uint32_t 0 ... OXFFFFFFFF Packet State / Error
ulCmd uint32_t 0 ... OXFFFFFFFF Packet Command / Answer
ulExt uint32_t see below Packet Extension
ulRout uint32_t 0 ... OXFFFFFFFF Reserved (routing information)
Packet abData Packet Data (packet specific data)
(El)a%tgata) ;/sgzlta;? ulLen defines the length of

Table 25: General packet structure: HIL_PACKET_T

Minimum packet size is 40 byte (equal to the packet header structure without user data).

Maximum packet size (header + data) is limited by the mailbox send / receive area size.

Default packet structure

/* packet header definition */

typedef struct HIL_PACKET_HEADER_Ttag

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

ulDest;
ulSrc;
ulDestld;
ulSrcld;
ullLen;
ulld;
ulSta;
ulCmd;
ulExt;
ulRout;

3 HIL_PACKET_HEADER_T;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

destination of the packet (task message queue reference) */
source of the packet (task message queue reference) */
destination reference (internal use for message routing) */
source reference (internal use for message routing) */

length of packet data (starting from the end of the header) */
identification reference (internal use by the sender) */

operation status code (error code,

operation command code */
extension count (nonzero in multi-packet transfers) */
router reference (internal use for message routing) */

/* definition of a packet with maximum size */
typedef struct HIL_PACKET_Ttag

HIL_PACKET HEADER_T

uint8_t

} HIL_PACKET T;

tHead;
abData[HIL_MAX_PACKET_SIZE - sizeof (HIL_PACKET_HEADER_T)];

initialize with 0) */

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 38/153

Parameter description

Variable /
Element

Description

ulDest

Destination Address / Handle
ulDest defines (addresses) the receiver of a packet and must be set in any case (mandatory).

The destination address could be either a simple definition or a handle to a task packet input buffer.
Definitions are used if packets passed via a mailbox, while handles are used inside a netX firmware.

See section Packet Addressing via ulDest on page 41.
A receiving process or task may evaluate this field and has to pass it back unchanged.

ulSrc

Source Address / Handle

ulSrc field identifies the sender of the packet. If used by a host application (outside a netX firmware),
any number, which identifies the application uniquely (e.g. process handle), can be used. If used
inside a netX firmware (e.g. inter-task communication), this field holds the identifier of the sending task
respectively the task input queue handle.

See section Using ulSrc and ulSrcld on page 43.
The receiver may evaluate this field and has to pass it back unchanged.

ulDestld

Destination Identifier

ulDestld is an additional field to identify the receiver of a packet. It can hold any number or handle.
The packet command (ulCmd) defines if the value is necessary (used) or not.

A receiving process or task may evaluate this field and has to pass it back unchanged.

ulSrcld

Source Identifier

ulSrcld can be used by the originator of a command packet to additionally distinguish between sub
components for which a packet is generated or sent.

A receiving process or task does not evaluate this field and has to pass it back unchanged.

ulLen

Packet Data Length
ulLen defines the length of the user data contained in the packet area (abData[]).
The size of the packet header is not included. The header has a fixed size of 40 bytes.

A process or task, creating a confirmation packet, must adjust the packet size according to the size of
the confirmation packet data.

ulld

Packet Identifier

ul Id is a uniqgue number used to identify multiple packets of the same type (given in ulCmd). It allows
the originator of the packet to match a specific confirmation with a specific command packet, if multiple
packets of the same type are activated. It is up to the originator of a packet if ul Id is used or not, but
it maybe necessary for some services (like fragmented packets).

A receiving process or task may evaluate this value and has to pass it back unchanged.

ulSta

Packet State / Error

The ulSta is used in confirmation packets to indicate failures in the command delivery, packet data or
in command processing of the receiving process.

Status and error codes that may be returned in ulSta are outlined in section Error codes (from page
132).

In a command packet, this field has to be zero.

ulCmd

Packet Command / Answer

ulCmd holds the command or confirmation code. Each command ulCmd has a specified code, which
is always an even number (bit 0 = 0) while the corresponding confirmation is always ulCmd + 1 (an
odd number, bit 0 = 1).

It is used by the receiving process to identify the command (even number, excluding zero) and
confirmation packets (odd number).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 39/153

ulExt

Packet Extension

The extension field ulExt is used for controlling packets that are sent in a sequenced or fragmented
manner. The field indicates the first, last or a packet of a sequence.
If fragmentation of packets is not required, the extension field is set to zero.

0x00000000 = HIL_PACKET_SEQ_NONE (default)
0x00000080 = HIL_PACKET_SEQ_FIRST
0x000000CO = HIL_PACKET_SEQ_MIDDLE
0x00000040 = HIL_PACKET_SEQ_LAST

ulRout

Routing Information
The ulRout field is used internally by the netX firmware only.

It has no meaning to a host application and therefore the host application has to set it to zero for
commands and has to be returned unchanged in confirmations.

abData

Packet Data

The abData field contains the payload of the packet. Depending on the command (ulCmd) or
confirmation (ulCmd +1) a packet may or may not have a data field.

The length of the data field is given in the ulLen field.

Table 26: Packets: Packet description

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 40/153

4.1.2 Default Packet Handling

For a complete transfer, a sent packet has to be answered (confirmed) by the receiving process.
The creation of a confirmation packet must follow the rules described below.

Packet Creator

The packet must be filled with the necessary information (header and/or data).
Unused fields must be set to 0.

Confirmations to a command must be verified (ulCmd, ulSta, ulLen and/or content).

Packet Receiver

Evaluation of the header and/or data content (at least ulCmd and ulLen).

Each command must be answered.

ulSta must be set to the processing result (ulSta = 0 = no Error).
ullCmd must be set to ulCmd + 1 marking the packet as an answer
(e.g. Command value = 0x02 / Answer value = 0x03).

ulLen must be set to the amount of data returned in the answer.

All other values of the header must be returned unchanged.
(*) except when using Packet Fragmentation (page 45).

Command Packet Answer Packet
A A
ulDest ‘ » ulDest
A A
ulSrc ’) ulSrc
ulDestld : : ulDestld
A I\
ulSrcld \ / ulSrcld
Command data length g
ulLen ulLen
< Answer data lenth
ulld ¢ > ulld
A 14
Value = 0 >
ulState ulState
State / Error (0 = no error)
-
Command code g
ulCmd Answer code (uICmd +1) ulCmd
el
UlEXt(®) A) UlEXt(®)
A 14
A A
ulRout ‘) ulRout
e — = \
_____________ -
e — e o ——
=== ———= T+

Figure 8: Packets: Default Packet Handling

Note: Default error codes are defined in Hil_Results.h and named ERR_HIL ...

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 41/153

4.1.3 Packet Addressing via ulDest

The receiver of a packet is addressed by the destination identifier ulDest in the packet header,
which must be filled out according to the specified receiver. The netX firmware offers several
addressable targets. A target itself is usually a task inside the firmware offering services.

Possible Packet Targets

Operating system middleware task of the netX firmware (operating system)
A fieldbus protocol stack behind a communication channel

Any task offering public services

Addressing atask inside a netX firmware

Tasks inside a netX firmware are addressed by their task handle created from the tasks dedicated
packet queue. This handle can be retrieved by a system command but for this procedure the name
of the task must be known.

Addressing a task via a DPM mailbox

To simplify the addressing for host applications working with the DPM, mailboxes are already
connected with corresponding tasks inside the firmware.

In case of the System Channel mailbox, the connected task is the middleware task of the operating
system. The Communication Channel mailboxes are connected to the application task (AP-task) of
the fieldbus protocol stack. This makes it unnecessary for the host application to know the hame of
a task and to retrieve task handles from the system.

Default Target Addresses

Definition Value Description

HIL_PACKET_DEST_DEFAULT_CHANNEL | 0x00000020 Default Channel (recommended)
Packet is passed to default handler

System Channel = Middleware
Communication Channel = Fieldbus protocol
HIL_PACKET_DEST_SYSTEM 0x00000000 Packet is passed to the Middleware

Independent of the channel

Table 27: Packets: Default Target Addresses for ulDest

Furthermore, the netX firmware also offers a routing mechanism which allows sending commands
to other channels by using the channel index.

Additional Target Addresses

Definition Value Description

HIL_PACKET_DEST_PORT_O 0x00000001 Packet passed to communication channel 0
HIL_PACKET_DEST_PORT_1 0x00000002 Packet passed to communication channel 1
HIL_PACKET_DEST_PORT_2 0x00000003 Packet passed to communication channel 2
HIL_PACKET_DEST_PORT_3 0x00000004 Packet passed to communication channel 3

Table 28: Packets: Additional Target Addresses for ulDest

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

42/153

Note: The recommended way to address the middleware of the operating system is through
the system mailbox and a fieldbus protocol via the communication channel mailbox.
This is because additional packets to the middleware via a channel mailbox could

influence the performance of the protocol stack handling.

Note: Confirmations are always returned to the mailbox of the channel, which initiated the

command.

Host Application

ulDest = 0x20
p ulDest = 0x00

DPM Channel Mailbox

netX Firmware

Middelware Task
(operating system)

Connected Default
Receiver

Figure 9: Packets: Target Addressing with ulDest

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 43/153

4.1.4 Using ulSrc and ulSrcld

The originator of a packet is defined by ulSrc which is the default identification of the sender (e.g.
host application / firmware task). The identification of the packet sender depends on the location of
the creating process.

Task inside the netX firmware

In case of a task inside a firmware, ulSrc is the task handle or better the address of the packet
gueue of the task.

Host application outside the netX firmware

Host applications, which are located outside of a netX firmware and using the DPM to
communicate to the firmware, can set ulSrc to any value including O.

But it is recommended to use a unique number (e.g. process handle) to prevent collisions with
other send processes.

ulSrdld can be freely used by the sending application (e.g. to address internal components).

Host Application = ulSrc

/ Processl:ulSrcld=1

Local Packet ¢— | Process2: ulSrcld =2

Handler \
A Process3: ulSrcld =3

DPM Channel Mailbox

netX Firmware

Protocol Stack

Figure 10: Packets: Using ulSrc and ulSrcld

Note: The netX firmware will not touch ulSrc and ulSrcld and both values are always
delivered back in the confirmation packet.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 44/153

415 Client/Server Mechanism

The Client/Server Mechanism is used to describe which part of the software (host application /
netX firmware) has initiated a command and which one has to answer it.

Naming Convention

Client is the initiator of a command
Host commands are called requests (REQ) / netX commands are called indications (IND)

Server is the responder to a command
netX answers are called confirmations (CNF) / Host answers are called responses (RSP)

By default, the host application will be the Client and the netX firmware will be the Server in a
transfer operation. The netX firmware usually doesn’t create commands for the host application.
This is because the host application must prepare itself to receive firmware commands and be able
to answer them.

But there are several services, offered by a netX firmware / protocol stack, which allow a stack to
actively inform the host application about state changes of the fieldbus system (e.g. alarm
messages from a fieldbus device). Such firmware requests must be activated by the host
application by sending an application register request command to the protocol stack. In this
situation, the netX firmware becomes the Client and the host application the Server.

For a better distinction between Client and Server in conjunction with the transfer direction,
commands are specified as Requests / Indications and answers are specified as Confirmation /
Response.

Client Server Server Client
Host Application netX Host Application netX

0{ A/Indica/tion/e
2 0

CONFIRMATION RESPONSE

Figure 11: Client/Server mechanism

Host to netX netX to Host

Direction | Description Direction | Description

O = ® | Host application sends a Request packet © > O | Host application receives an Indication packet

to the netX firmware from the netX firmware
© > O | netX firmware answers by a @ > O | Host application sends a Response packet
Confirmation packet back to the netX firmware (may not be
required

Table 29: Directions and names of packets

Note: Indications must be explicitly activated by the host application.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 45/153

4.1.6 Packet Fragmentation

Two mailboxes are used to transfer a packet from the host application to the netX firmware or visa
versa. Each mailbox has a limited size (= mailbox size). If the packet to be transferred is larger
than the mailbox size, the packet has to be fragmented.

For a description for netX 10/50/51/52/100/500-based firmware, see reference [1].

For a description for netX 90/4000/4100-based firmware, see reference [3].

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 46/153

4.1.7 Packet transfer synchronization

The transfer of packets via the mailbox system is synchronized by the corresponding handshake
flags in the handshake flag registers of each channel (see usNetxFlags / usHostFlags).

The following flag pairs are used to synchronize the packet transfer / mailbox handling.
System Channel Flags

HSF_SEND_MBX_CMD / NSF_SEND_MBX_ACK
NSF_RECV_MBX_CMD / HSF_RECV_MBX_ACK

Communication Channel Flags

HCF_SEND_MBX_CMD / NCF_SEND_MBX_ACK
NCF_RECV_MBX_CMD / HCF_RECV_MBX_ACK

Each mailbox has an owner allowed to initiate a transfer. The owner of the Send Mailbox is the
host application while the Receive Mailbox is owned by the netX firmware. And a mailbox can have
2 states (EMPTY / FULL), signaled by the corresponding handshake flags.

General Mailbox Definition

SYSTEM CHANNEL - Send Mailbox / Owner: Host Application
Handshake Flag Status Handshake Flag Mailbox State
HSF_SEND_MBX_CMD 2 8 NSF_SEND_MBX_ACK EMPTY
é 8 FULL
SYSTEM CHANNEL - Receive Mailbox / Owner: netX Firmware
NSF_RECV_MBX_CMD 2 2 HSF_RECV_MBX_ACK EMPTY
é 2 FULL
Table 30: Packet: System Channel Mailbox State Definition
COMMUNICATION CHANNEL - Send Mailbox / Owner: Host Application
Handshake Flag Status Handshake Flag Mailbox State
HCF_SEND_MBX_CMD 2 2 NCF_SEND_MBX_ACK EMPTY
1 0
0 1 FULL
COMMUNICATION CHANNEL - Receive Mailbox / Owner: netX Firmware
NCF_RECV_MBX_CMD 8 8 HCF_RECV_MBX_ACK EMPTY
1 0
0 1 FULL
Table 31: Packet: Communication Channel Mailbox State Definition
Note: The owner of a mailbox is allowed to start a transfer but he has to ensure the mailbox

is empty before starting it.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 47/153

Evaluation of the actual mailbox state can be done by a simple XOR relation of the host and netX
handshake registers and masking out the corresponding command flags:

if (0 == ((usHostFlags ™ usNetxFlags) & HCF_SEND_MAILBOX_ CMD))
/* Mailbox empty */

else
/* Mailbox full */

Default Packet Handling

Transmitter Handling Receiver Handling

= Check if the mailbox is empty = Check if the mailbox is full

= Copy packet into the mailbox = Copy packet from the mailbox to a local buffer

= Toggle of the corresponding command flag (e.g. = Toggle of the corresponding acknowledge flag (e.g.
HCF_SEND_MBX_CMD / NCF_RECV_MBX_CMD). HCF_RECEIVE_MBX_ACK / NCF_SEND_MBX_ACK).

Table 32: Packet: Default Packet Handling

Example: Host sending a packet to the device via the Send Mailbox

Step Function / Flags Mailbox State | Description

1 Initial state - Host checks if Send Mailbox empty (Flags Equal: both 1 or both 0)

HCF_SEND_MBX_CMD NCF_SEND_MBX_ACK Access allowed by host.
1 1 EMPTY
0 0

2 Host - Send Mailbox Handling

= Host copies a packet to the Send Mailbox
= Host toggles the HCF_ SEND MBX_ CMD (120 or 02>1)

HCF_SEND_MBX_CMD NCF_SEND_MBX_ACK Access switched to netX.
0 1 FULL
1 0

3 netX - Send Mailbox Handling

netX firmware gets a handshake flag change interrupt

Firmware checks for Send Mailbox full (Flags Not Equal)

Firmware copies the packet from the Send Mailbox to internal RAM
Firmware acknowledges the received packet by toggling
NCF_SEND_MBX_ACK (01 or 1->0)

HCF_SEND_MBX_CMD NCF_SEND_MBX_ACK Mailbox is empty; access is
switched back to host.

0 0 EMPTY

1 1

Back to Step 1
Table 33: Packet: Send Mailbox Example

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

48/153

Example: netX device sends a packet to the host via the Receive Mailbox

= Host cyclically checks for Receive Mailbox full (Flags Not Equal)
= Host copies the packet from the mailbox to internal RAM
= Host acknowledges the received packet by toggling

HCF _RECEIVE _MBX ACK (021 or 120)

Step | Function / Flags Mailbox State | Description
1 Initial state - netX checks if the Receive Mailbox is empty (Flags Equal: both 1 or both 0)
NCF_RECV_MBX_CMD HCF_RECV_MBX_ACK Access allowed by netX.
1 1 EMPTY
0 0
2 netX - Receive Mailbox Handling
= netX copies the packet into the Receive Mailbox
* netXtoggles NCFE_RECV_MBX CMD (120 o0r 0->1)
NCF_RECV_MBX_CMD HCF_RECV_MBX_ACK Access switched to host.
0 1 FULL
1 0
3 Host - Receive Mailbox Handling

NCF_RECV_MBX_CMD

HCF_RECV_MBX_ACK

0

0

1

1

EMPTY

Mailbox is empty;
switched back to netX.

access

is

Back to step 1

Table 34: Packet: Receive Mailbox Example

Note:

The system mailbox works in the same way, with the difference that the flags are called
differently and located in a different handshake register.
> HSF_SEND_MBX_CMD / NSF_SEND_MBX_ACK

Send Mailbox flags
Receive Mailbox Flags

> NSF_RECV_MBX_CMD / HSF_RECV_MBX_ACK

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 49/153

4.2 Cyclic Data Transfer via Input/Output Data Areas

Cyclic process data of a fieldbus protocol stack (input and output data) is exchanged between
members of a fieldbus network and stored in separate input and output areas. Each area has its
own dedicated synchronization flags.

The input area holds the process data image received from the network whereas the output area

holds data sent to the network.
Host Application

OUTPUT Data Area INPUT Data Area

Figure 12: 1/0s: Input / Output Data Areas

INPUT/OUTPUT Data Areas

When a transfer takes place, either the host or the netX temporarily “owns” the input/output data
area and has exclusive read/write access to it. This guarantees data consistency over the data
areas while the synchronization can be performed independently for each of the areas.

The fieldbus protocol stacks also support different data exchange modes, which define the initiator
of a data transfer and how I/O data from the fieldbus network are handled inside the netX firmware
respectively a fieldbus protocol stack.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 50/153

4.2.1 I/O Data Exchange Modes

I/O data exchange modes are defined to allow a data flow control of I/O data between a fieldbus
network and the host application and the use of a simple synchronization flag mechanism to
ensure data consistency during the transfer.

This might be necessary because the speed of a host system and the network can be different and
a fieldbus protocol may offer additional options to exchange data with the fieldbus system. Both
must be considered in the host application and may influence the data processing and program
flow in the application.

General overview

Host | DPM | netx
Input Buffer Input Data Area Input Buffer

Output Buffer Output Data Area Output Buffer

Figure 13: 1/0s: I/0 Data Exchange

A data exchange mode is described by two attributes. The first is the initiator of the transfer,
described as the controlled mode: Host Controlled or Device Controlled. While the second attribute
defines the transfer mode of the I/O data: Buffered or Synchron.

Controlled Mode Host Controlled or Device Controlled
Transfer Mode Buffered or Synchron

Both attributes are necessary to cover the possibilities of a data transfer and to handle it correctly.
Host Controlled Mode

In Host Controlled Mode, the host application initially has access to the 1/0O data areas in the
DPM and can be the first to read and write data before starting a transfer between the netX
firmware and the DPM.

Device Controlled Mode

Device Controlled Mode defines the device (netX / fieldbus protocol stack) as the initiator of a
data transfer. In this case the device (netX) initially has access to the I/O data areas inside
the DPM and will activate the data transfer between the host and the DPM.

Buffered Transfer

Defines that 1/0 data is automatically transferred between the fieldbus system and internal
buffer inside the netX firmware. A transfer between the internal buffer and the DPM depends
on the Controlled Mode.

Synchronous Transfer

Defines that I/O data is not buffered inside the device (netX / fieldbus protocol) instead they
are exchanged (read/written) directly with the I/O areas in the DPM. The Controlled Mode
defines the initiator of a transfer.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

51/153

The following data exchange modes are defined

Data Exchange Modes Controlled by | Consistency | Supported by
Buffered Host Controlled (default) Host Yes Master & Slave Firmware
Buffered Device Controlled netX Yes Slave Firmware
Uncontrolled Mode none No currently not supported
Table 35: 1/0Os: Process Data Exchange Modes
Note: Data exchange modes are a part of the fieldbus protocol configuration which may allow

configuring different exchange modes for the input / output areas but not all
combinations are reasonable.

Meaningful configurations are:
Output Area > Buffer Host Controlled
Input Area - Buffered Host or Device Controlled / Buffered Device Controlled

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 52/153

4211 Buffered Host Controlled Mode

The Buffered Host Controlled Mode is the default mode for the transfer of input/output data
between the fieldbus system and the host application and available on master and slave devices.

In Buffered mode, the protocol stack uses internal buffers to store/send cyclic fieldbus data. The
exchange between the local buffers and the DPM is only done if the host application requests an
update. This allows a complete asynchronous handling of I/O data, on both sides, the fieldbus and
the host application.

Note: Network cycle and task cycle of the host application are not synchronized but input and
output data transfer is consistent.

General Definitions

Host has access to the input and output data area

Host has to request an update of the input/output area

A request switches data access to the netX device

The netX exchanges the content of the requested data with the internal buffer
The netX confirms the data exchange by switching back data access to the host

Sequence of the process data exchange:

Step | Action Figure
1 (1) The application (host) owns access rights to Application Py Protocol Stack } Network
the input/output data areas in the DPM and is — J._‘
able to read and write the process data -— buter | S———
areas. P \
|
(2) For each valid bus cycle, the protocol stack ——— oupt -_ -{—»
: : — > & wer | T
exchanges the process data with the internal . A But
buffers. |
o] I
2 (1) The application requests an update of the Application DF’,M______P;o_ccEt;ck_ | Network
process data areas inside the DPM. <
e = e —
I
/\)
-
Outpul Outpul
ArlepaI Bu;?ert e —
i I
I
|
N J i
- _—-_—-—_—=
3 (1) The protocol stack exchanges the data of Application oo Protocol Stack ! Network
the requested DPM area (input/output) with (1) !
Inpu Inpu
the internal buffer content. Area <i§ Buter !
-
(2) The update process will be acknowledged !
and access to the DPM areas is switch back ouput @0%“ !
to the host application. e Buter !
-~ I
Goto step 1 : J.

Table 36: 1/0Os: Buffered Host Controlled Mode

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 53/153

Considerations

If the host application is faster than the network cycle, it might be possible that data in the
output buffers is overwritten without ever being sent to the network. As for the other direction,
the host application may read the same input values over several read cycles or the protocol
stack may block further input updates by delaying the acknowledgement.

If the host application is slower than the network cycle, the protocol stack might overwrite the
input buffer with new data received from the network, without it ever being received by the
host application. The output data on the network will be the same over several network
cycles.

Note: In case of a network fault (e.g. network cable disconnect) the protocol stack clears
NCF_COMMUNICATING flag in the netX communication flags usNetXFlags, see
section Communication Channel - Handshake Register on page 27.
Input data should not be evaluated anymore by the host application while output data
can be still exchanged with the protocol stack.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 54/153

421.2 Buffered Device Controlled Mode

The Buffered Device Controlled Mode defines the netX device (protocol stack) as the initiator of a
data exchange between the protocol stack and the host application.

Like in the Buffered Host Controlled Mode, the Buffered attribute defines the data handling inside
the fieldbus protocol stack, where cyclic fieldbus input/output data is stored to/send via internal
buffers. The exchange of the local buffers with the corresponding DPM areas is activated by the
protocol stack (netX device), which also signals the host application when new data is received
from or send to the fieldbus network.

Note: The Device Controlled Mode is only offered for the input data of slave devices!

The general handling in a host application for data areas transferred in Buffered Device Controlled
Mode, corresponds to the handling in Buffered Host Controlled Mode, except the initiator of a
transfer is the netX device and therefore the evaluation of the synchronization flags is inverted.

General Definitions

netX device has access to the input and output data area

netX (protocol stack) signals new data received by the field bus network and written to the
input data area of the DPM

Access to the DPM input area is switched to the host
The host copies the input data to a local buffer
Host confirms the data processing

Access to the DPM area is switched back to the netX

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 55/153

Sequence of the process data exchange:

Step Action Picture

1 (1) The application (host) checks if access rights to Application oy Protocol stack | Network

the input area are available.

(2) The protocol stack takes the input data from the
first valid bus cycle, inserts the data into the
internal buffer and the input DPM area and
signals the new data available. This switches
the access right to the host.

2 (1) The application (host) recognizes the new data Application H Protocol Stack
in the input area. Takes the data from the input
area and confirms the processing. Access right

to the DPM area is switch back to netX.

(2) While the host has access to the input DPM
area, the protocol stack will store any further
received field bus data in the internal input
buffer.

3 (1) The protocol stack recognizes the Application X @ Protwcol Stack ! Network
acknowledgement from the host.

Input
Buffer

(2) If new data from the field bus are available,
Data is copied to the DPM area and host will be

signaled. Access right is switch to the host.

Goto step 2

Table 37: 1/0Os: Buffered Device Controlled Mode

Considerations:

If the host application is slower than the network cycle, the protocol stack buffers further
network data and might overwrite the input buffer several times, resulting in data never send
to the host application.

A protocol stack counts the number of incomplete updates of the input data area in DPM
(see Common Status Block - bErrorPDINnCnt) where access was switched to the host
application. This counter can be evaluated by the host application to find out if bus cycles
have been missed.

Note: In case of a network fault (e.g. network cable disconnect) the protocol stack clears the
NCF_COMMUNICATING flag in the netX communication flags usNetXFlags (see
section Communication Channel - Handshake Register on page 27).
Input data should not be evaluated anymore by the host application while output data
can be still exchanged with the protocol stack.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 56/153

4.2.2 I/O Data Area Access Synchronization
Access to the 1/0O process data areas in the DPM is synchronized by dedicated handshake flags in
the handshake register of the corresponding communication channel.

I/O Process Data INPUT Flag Definitions
NCF_PDO_IN_CMD / HCF_PDO_IN_ACK

I/0 Process Data OUTPUT Flag Definitions
HCF_PDO_OUT_CMD / NCF_PDO_OUT_ACK

Attention: In the Hil_DualPortMemory.h file there is only ONE definition for the HCF_PDO_ and
NCF_PDO_ handshake bits per direction IN / _OUT available. Therefore the
interpretation of CMD / _ACK will change depending on the Controlled Mode by using
the same definition. The correct functional interpretation will be given in brackets (.....)!

Handshake flag definition corresponding to the Controlled Mode:

Input Data Area Flags

Controlled Mode Host netX
Host Controlled HCF_PDO_IN_ACK(_CMD) NCF_PDO_IN_CMD(_ACK)
Device Controlled HCF_PDO_IN_ACK NCF_PDO_IN_CMD

Output Data Area Flags

Controlled Mode Host netX
Host Controlled HCF_PDO_OUT_CMD NCF_PDO_OUT_ACK
Device Controlled HCF_PDO_OUT_CMD(_ACK) NCF_PDO_OUT_ACK(_CMD)

Depending on the 1/0O data exchange mode, the handling of the handshake flags differs for the host
and the netX. The exchange mode is part of the fieldbus protocol stack configuration and
separated for the input and output data area. The current settings can be retrieved from the
Common Status Block of the communication channel.

Handshake Mode Information - Common Status Block

Offset Type Name Description
Input Data Area
0x0020 uint8_t bPDInHskMode Handshake Mode:

Input Process Data Handshake Mode, see page 106.
0x0021 uintd_t bPDINnSource Input Process Data Handshake Source
0x002D uintd_t bErrorPDINCnt Number of input process data handshake errors
Output data area
0x0022 uint8_t bPDOutHskMode Handshake Mode:

Output Process Data Handshake Mode, see page 106.
0x0023 uint8_t bPDOutSource Output Process Data Handshake Source
0x002E uint8_t bErrorPDOutCnt Number of output process data handshake errors

Table 38: Input / Output Data Area

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 57/153

42.2.1 Synchronization in Buffered Host Controlled Mode
Example: Read INPUT data by the host in Buffered Host Controlled Mode
Step | Flags INPUT State | Description
1 Initial state - Host has access to the input data area
HCF_PDO_IN_ACK(_CMD) | NCF_PDO_IN_CMD(_ACK) | FREE Access allowed by host.
1 1
0 0

2 Host - Input Data Handling

= Host checks for access right for the input area (HCF_PDO_IN_ACK equal to NCF_PDO0_IN_CMD)
= Host copies the input data from the input data area of the DPM to a local buffer
= Host requests the device to update input data area in the DPM by toggling

HCF_PDO_IN_ACK (120 or 02>1)

HCF_PDO_IN_ACK(_CMD) | NCF_PDO_IN_CMD(_ACK) | BUSY Access switched to netX which
should update the data.

0 1

1 0

3 netX - Input Data Handling

= netX gets an interrupt signaling a state change in the handshake flags

= netX checks the state of HCF_PDO_IN_ACK not equal NCF_PDO0_IN_CMD (request from host)

= netX has access rights and copies the actual local input data into the input data area of the DPM and
toggles NCF_PDO_IN_CMD (10 or 0>1)

NCF_PDO_IN_ACK(_CMD) | NCF_PDO_IN_CMD(_ACK) | DONE Device has updated the INPUT
0 0 data; access is switched back
to host.
1 1

Back to Step 2

Table 39: 1/0s: Synchronization in Buffered Host Controlled Mode - Input

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

58/153

Example: Write OUTPUT data by the host in Buffered Host Controlled Mode

Step | Flags OUTPUT State Description
1 Initial state - Host has access to the output data area
HCF_PDO_OUT_CMD NCF_PDO_OUT_ACK FREE Access allowed by host.
1 1
0 0
2 Host - Output Data Handling
= Host checks for access right to output area (HCF_PDO0_OUT_CMD equal to NCF_PDO0_OUT_ACK)
= Host copies its local data to the output data area of the DPM
= Host signals to the device that new output data is available in the DPM output data area by toggling
HCF_PD0O_OUT_CMD (120 or 0>1)
HCF_PDO_OUT_CMD NCF_PDO_OUT_ACK DATA available | Access switched to netX which
should take the data.
0 1
1 0
3 netX - Output Handling

= netX gets an interrupt signaling a state change in the handshake flags

= netX checks the state of HCF_PDO_OUT_CMD not equal NCF_PD0_OUT_ACK (request from host)
= netX copies the data from the DPM output data area into the local output buffer and toggles
NCF_PDO_OUT_ACK (10 or 0>1) (The Output data will be sent to the network with the next field

bus cycle)
HCF_PDO_OUT_CMD NCF_PDO_OUT_ACK
0 0
1 1

DONE

netX has taken the OUTPUT
data; access is switched back

Back to Step 2

Table 40: 1/0s: Synchronization in Buffered Host Controlled Mode - Output

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 59/153

4.2.2.2 Synchronization in Buffered Device Controlled Mode

In Device Controlled Mode the initiator of the transfer changes from HOST to netX. While in Host
Controlled Mode the transfer for the INPUT data area was started by toggling HCF_PDO_IN_ACK,
it is now used to acknowledge a transfer. In Device Controlled Mode the transfer starts by toggling
NCF_PDO_IN_CMD.

Example: Read INPUT data by the host in Buffered Device Controlled Mode

Step | Flags INPUT State Description
1 Initial state - netX has access to the input data area
NCF_PDO_IN_CMD HCF_PDO_IN_ACK FREE Access allowed by netX.
1 1
0 0
2 netX - Input Handling
= netX gets new input data from the field bus network and stores the data in the local input buffer
= netX checks if handshake flags NCF_PDO_IN_CMD equal to HCF_PDO_IN_ACK. If not
bErrorPDINCnt is incremented and new data will not be signaled to the host
= netX copies the content of the input buffer to the input data area of the DPM and toggles
NCF_PDO_IN_CMD (1->0 or 0>1)
NCF_PDO_IN_CMD HCF_PDO_IN_ACK DATA available | Access switched to the host,
0 1 which should take the data.
1 0
3 Host - Input Handling
= Host checks if handshake flag NCF_PDO_IN_CMD not equal to HCF_PDO_IN_ACK
= Host copies the input data area from the DPM to a local buffer and toggles
HCF_PDO_IN_ACK (10 or 0>1)
NCF_PDO_IN_CMD HCF_PDO_IN_ACK DONE Host has taken the INPUT data;
0 0 access is switched back to
device.
1 1
Back to Step 2

Table 41: 1/0s: Synchronization in Buffered Device Controlled Mode - Input

Note:

Buffered Device Controlled Mode for OUTPUT data is usually not supported by the

protocol stacks.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism 60/153

4.3 Change of State Mechanism (COS)

A communication channel has more options and commands than bits (flags) available in the
handshake flag register. Therefore a so called Change of State (COS) mechanism is defined which
extends the direct usable handshake flags by an additional 32 Bit value, including the opportunity
to generate interrupts when the value in the additional 32 Bits is changed.

In other words Change of State (COS) registers are basically extensions to the handshake
registers.

Furthermore, the COS mechanism defines an acknowledgement of state changes before another
state change will be signaled. The mechanism is direction oriented and distinguishes between
state changes from the host application and from the device:

Communication COS Handling

Describes the handling of additional device states located in the Communication COS
Register in the Common Status Block (see section Common Status Block on page 101).

Application COS Handling

Describes the handling of additional application states located in the Application COS
Register in the Common Control Block (see section Common Control Block on page 99).

The Change of State Command and Change of State Acknowledge flags are located in the
corresponding handshake registers of the communication channel (see section Communication
Channel - Handshake Register and Flags on page 27).

The COS handling also defines an Enable Flag Handling for signals inside the COS registers.
This simplifies handling of COS signals, because the receiver of the COS information is able to
clearly detect which signals are currently active and which not.

Enable Flag Handling

Is used to mark signals, inside a COS register, as active (enabled) or not active (disabled).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism 61/153

43.1

Communication COS Handling

The COS handling is used to signal additional states to the host application.

Sequence of the Communication COS handling

Change Of State (COS) - Communication COS Handling

Communication Channel

Host Application DPM Layout

Communication Channel

Common Status Block structure
NETX_COMMON_STATUS_BLOCK

Handshake Register

\
Host Flags J{ | |netXFIags J{ |

Offset 0x0010 = ulCommunicationCOS

| HCF_NETX_COS_ACK | | NCF_NETX_COS_CMD

netX Firmware

Figure 14: Change of State Mechanism (COS): Communication COS Handling

Step | Description

1 netX Firmware checks if access to the COS information is allowed (COS flags are equal,
NCF_NETX_COS_CMD equal to NCF_NETX_COS_ACK) and updates the COS information in
ulCommunicationCOS.

2 netX firmware toggles the NCF_NETX_COS_CMD which signals new information available to the host.

3 Host cyclically checks if COS flags are not equal (NCF_NETX_COS_CMD unequal to
NCF_NETX_COS_ACK) and if so, new information is available and can be read by the host.

4 Host has access to ulCommunicationCOS and reads the value.

5 Host application acknowledges COS state change by toggling HCF_NETX_COS_ACK.

Table 42: Change of State Mechanism (COS): Communication COS Handling

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

62/153

4.3.2

Application COS Handling

Used to signal additional states / commands to a firmware.

Sequence of the Application COS handling

Communication Channel

Host Application

©

Host Flags | \|

Hanﬁéhake Register

| netXFlags | |

N

| HCF_HOST_COS_CMD

| NCF_HOST_COS_ACK

netX Firmware

®

Change Of State (COS) - Application COS Handling

\F

DPM Layout

Communication Channel

Control Block structure
NETX_CONTROL_BLOCK

Offset 0x0008 = ulApplicationCOS

Figure 15: Change of State Mechanism (COS): Application COS Handling

Step | Description

1 Host checks if access to the COS information is allowed (COS flags are equal, HCF_HOST_COS_CMD
equal to NCF_HOST_COS_ACK) and updates the COS information in ulApplicationCOS.

2 Host toggles HCF_HOST_COS_CMD which signals new information available.

3 Firmware gets an interrupt if the COS flags are changed and checks the COS flags for inequality
(HCF_HOST_COS_CMD unequal to NCF_HOST_COS_ACK) and if so, new information is available and can
be read by the firmware

4 netX firmware reads ulApplicationCOS.

5 Firmware acknowledges COS state change by toggling NCF_HOST_COS_ACK.

Table 43: Change of State Mechanism (COS): Application COS Handling

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Data Transfer Mechanism

63/153

4.3.3 Enable Flag Handling

Enable flags are used in the Communication COS and Application COS registers to selectively
activate and deactivate functions, without interfering with each other and to permit an evaluation of
currently activated functions. It also simplifies, for both the initiator and receiver of a command, to

identify actual active commands.

Note: If a command, equipped with an enable flag, should be signaled in the COS register,
the enable flag must be set to 1 (enabled) before the state in the corresponding
command flag will be evaluated by the receiver of the COS command. And the enable
flag must be set to 0 (disabled) after the receiver has acknowledged the recognition of
the command and before a new COS command is initiated.

Example: Signal HIL_APP_COS_BUS_ON, located in the Application COS flags

The command consists of two flags HIL_APP_COS BUS_ON_ENABLE and

HIL_APP_COS_BUS_ON. It can be used to switch the field bus communication ON and OFF and
the command is executed by the fieldbus protocol stack.

Signal State

Description

HIL_APP_COS_BUS_ON_ENABLE

0 = command is not active
1 = command is active

HIL_APP_COS_BUS_ON

0 = switch OFF fieldbus communication
1 = switch ON fieldbus communication

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Data Transfer Mechanism

64/153

Default COS Handling

Step | Flags COS State Description
1 Initial state - Host has no active COS state
HCF_HOST_COS_CMD NCF_HOST_COS_ACK | Free COS signal not active, host can
signal a new state.
1 1
0 0
2 Host - COS Handling - Bus ON command
= Host checks if COS handling is possible (HCF_HOST_COS_CMD equal to NCF_HOST_COS_ACK)
= Host sets the command flag and the enable flag of the new state to signal
(e.g. HIL_APP_COS_BUS_ON =1/HIL_APP_COS_BUS_ON_ENABLE =1)
= Host signals the new state to the device by toggling HCF HOST COS CMD (10 or 02>1)
HCF_HOST_COS_CMD NCF_HOST_COS_ACK | BUSY Access to COS state is switched
0 1
1 0
3 netX - COS Handling
= netX gets an interrupt signaling a state change in the handshake registers
= netX checks the state of HCF_HOST_COS_CMD not equal NCF_HOST_COS_ACK
(new COS state from the host/request from host)
= netX reads and evaluates the ulApplicationCOS register
(e.g. HIL_APP_COS_BUS_ON ==1 && HIL_APP_COS_BUS_ON_ENABLE == 1)
= netX firmware processes the Bus ON command
= netX acknowledges the COS handling by toggling NCF_HOST_COS_ACK (0>1 or 1->0)
HCF_HOST_COS_CMD NCF_HOST_COS_ACK | DONE Device has processed the COS
0 0 flags and access is switched back
1 1
4 Host - COS Handling - Deactivation
= Host recognizes a COS acknowledgment (HCF_HOST_COS_CMD equal to NCF_HOST_COS_ACK)
= Host disables the COS command by setting the enable flag HIL APP_COS BUS ON ENABLE =0
Goto Step 2

Table 44: Change of State Mechanism (COS): Enable Flag Handling

Note:

The COS enable flag handling is identical for the host and the netX commands.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 65/153

5 DPM Definitions / Mapping and Content

This section describes the DPM mapping in more detail. The presented DPM structures and
definitions are provided by two C header files.

Hil_DualPortMemory.h

This C header file contains all parts necessary to work with the DPM by using symbolic
names. It provides definitions of the DPM structure, data blocks and all global definitions
offered by the DPM.

Hil _Packet.h

Provides the Packet definitions

Note: All structures and definitions used in the following chapters can be found in the Hil_*.h
header files.

5.1 DPM Mapping

In the default memory layout, each channel has a fixed structure and a fixed length. The following
chapter describes the structures and elements offered by the DPM layout.

Dual-Port Memory Mapping: Default Mapping (64KByte)

Name Offset Size Description

System Channel (0x000 ... 0x01FF)

System Information 0x0000 48 Bytes System Information Area
Channel Information 0x0030 128 Bytes Channel Information Area
Reserved 0x00BO 8 Bytes Reserved

System Control 0x00B8 8 Bytes System Control and Commands
System Status 0x00CO0 64 Bytes System Status Information
System Mailboxes 0x0100 256 Bytes System Send / Receive Mailbox

Handshake Channel (0x0200 ... Ox02FF)
Handshake Register 0x0200 64 Bytes Handshake Registers Area

Reserved 0x0240 192 Bytes Reserved

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

66/153

Name Offset Size Description

Communication Channel 0 (0x0300 ... Ox3FFF)

Reserved 0x0300 8 Bytes Reserved

Common Control Block 0x0308 8 Bytes Common Control Register

Common Status Block 0x0310 64 Bytes Common Protocol Stack Status Information
Extended Status Block 0x0350 432 Bytes Network Specific Information

Send Mailbox 0x0500 1600 Bytes Send Mailbox for Non-Cyclic Data Transfer
Receive Mailbox 0x0B40 1600 Bytes Receive Mailbox for Non-Cyclic Data Transfer
Output Data Image 1 0x1180 64 Bytes High Priority Output Process Data Image
Input Data Image 1 0x11Co0 64 Bytes High Priority Input Process Data Image
Reserved 0x1200 256 Bytes Reserved for Future Use, Set to Zero
Output Data Image O 0x1300 5760 Bytes Cyclic Output Process Data Image

Input Data Image O 0x2980 5760 Bytes Cyclic Input Process Data Image
Communication Channel 1..3 (0x4000 ...)

Comm. Channel 1 0x4000 15616 Bytes | Structure see Communication Channel 0
Comm. Channel 2 0x7D00 15616 Bytes | Structure see Communication Channel 0
Comm. Channel 3 0xBA0O 15616 Bytes | Structure see Communication Channel 0

Application Channel 0..1

App. Channel 0/1

unknown

| unknown

‘ Application channel not defined yet

Table 45: DPM Mapping: Default Mapping

Default DPM size of 64 KByte (65536 Byte) results from the sizes of the System Channel,
Handshake Channel and 4 Communication Channels.

The default communication channel size is 15616 Byte.

Note: The firmware will set the Default Memory Map flag in the System COS field in System
Status block, if the default memory layout is used.
Note: The default mapping is also available with 16 KByte DPM size, but than with only one

communication channel.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

67/153

Dual-Port Memory Mapping: 8Kbyte Mapping

Name Offset Size Description

System Channel (0x000 ... 0xO1FF)

System Information 0x0000 48 Bytes System Information Area

Channel Information 0x0030 128 Bytes Mapping Information

Reserved 0x00BO 8 Bytes Reserved

System Control Block 0x00B8 8 Bytes System Control and Commands

System Status Block 0x00CO0 64 Bytes System Status Information

System Mailboxes 0x0100 256 Bytes System Send / Receive Mailbox

Handshake Channel (0x0200 ... 0X02FF)

Handshake Register 0x0200 64 Bytes Cumulated Handshake Registers

Reserved 0x0240 192 Bytes Reserved

Communication Channel 0 (0x0300 ... Ox1FFF)

Reserved 0x0300 8 Bytes Reserved

Common Control Block | 0x0308 8 Bytes Common Control Register

Common Status Block 0x0310 64 Bytes Common Protocol Stack Status Information
Extended Status Block | 0x0350 432 Bytes Network Specific Information

Send Mailbox 0x0500 1600 Bytes Send Mailbox for Non-Cyclic Data Transfer
Receive Mailbox 0x0B40 1600 Bytes Receive Mailbox for Non-Cyclic Data Transfer
Output Data Image 1 0x1180 64 Bytes High Priority Cyclic Output Process Data Image
Input Data Image 1 0x11CO0 64 Bytes High Priority Cyclic Input Process Data Image
Reserved 0x1200 256 Bytes Reserved for Future Use, Set to Zero

Output Data Image 0 0x1300 1536 Bytes Cyclic Output Process Data Image

Input Data Image O 0x1900 1536 Bytes Cyclic Input Process Data Image

Reserved Area (0x1FQO0 ... Ox1FFF)

Reserved | 0x1F00 | 256 Bytes Reserved for Future Use, set to Zero

Table 46: DPM Mapping: 8 Kbyte Mapping

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

68/153

5.2 System Channel

The System Channel is the first channel in the dual-port. It holds information about the system
itself (netX firmware/netX operating system) and provides a mailbox transfer mechanism for

system related messages or packets.

Note: Offsets are given relative to the start offset of the System Channel start address.

Structure of the System Channel

System Channel: NETX_SYSTEM_CHANNEL DPM Start Offset = 0x0000
Offset Type Name Description
0x0000 Structure tSysteminfo System Information Block
Identifies netX Dual-Port Memory
See section System Information Block on page 69.
0x0030 Structure atChannelinfo[8] Channel Information Block
Contains Configuration Information about available
Communication and Application Channel Blocks.
See section Channel Information Block on page 79.
0x00BO Structure tSysHandshake System Handshake Block
(not used, set to zero)
0x00B4 uint8_t bReserved[4] Reserved
0x00B8 Structure tSystemControl System Control Block
System Control and Commands
See section System Control Block on page 87.
0x00CO0 Structure tSystemState System Status Block
System Status Information
See section System Status Block on page 89.
0x0100 Structure tSystemSendMailbox System Mailboxes
0x0180 tSystemRecvMailbox System Send and Receive Packet Mailbox Area, always
located at the end of the System Block.
See section System Mailbox on pabe 93.

Table 47: System Channel: System Channel Structure

System Channel Structure Reference
typedef struct NETX_SYSTEM_CHANNELtag

NETX_SYSTEM_INFO_BLOCK tSystemlinfo;
NETX_CHANNEL__INFO_BLOCK atChannel Info[8];
NETX_HANDSHAKE_CELL tSysHandshake;

uint8_t

NETX_SYSTEM_CONTROL_BLOCK

NETX_SYSTEM_STATUS_BLOCK

NETX_SYSTEM_SEND_MAILBOX

NETX_SYSTEM_RECV_MAILBOX
} NETX_SYSTEM_CHANNEL;

abReserved[4];
tSystemControl ;
tSystemState;
tSystemSendMai Ibox;
tSystemRecvMai Ibox;

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

69/153

5.2.1

System Information Block

The System Information Block helps to identify the netX dual-port memory and holds general
information about the netX device including a cookie, DPM length as well as information regarding

the firmware running on the netX.

Structure of the System Information Block

System Information Block: NETX_SYSTEM_INFO_BLOCK

Offset Type Name Description
0x0000 uint8_t abCookie[4] netX DPM Identification (start of DPM)
ASCII characters:
'netX’ = firmware is running
0x0004 uint32_t ulDpmTotalSize DPM Size in bytes (see page 70)
0x0008 uint32_t ulDeviceNumber Device Number (see page 71)
0x000C uint32_t ulSerialNumber Serial Number (see page 71)
0x0010 uint16_t ausHwOptions[4] Hardware Assembly Options (see page 71)
0x0018 uintlé_t usManufacturer Manufacturer Code (see page 72)
0x001A uint16_t usProductionDate Production Date (see page 73)
0x001C uint32_t ulLicenseFlagsl License Code - Flags 1 (see page 74)
0x0020 uint32_t ulLicenseFlags2 License Code - Flags 2 (see page 74)
0x0024 uintl6_t usNetxLicenselD netX License Identification (see page 74)
0x0026 uintl6_t usNetxLicenseFlags netX License Flags (see page 74)
0x0028 uintlé_t usDeviceClass Device Class (see page 76)
0x002A uint8_t bHwRevision Hardware Revision (see page 78)
0x002B uint8_t bHwCompatibility Hardware Compatibility (see page 78)
o
0x002D uints_t bReserved g:tsteor"zegro
OX%?%%ZF uintl6_t usReserved g:tsgvzegro

Table 48: System Channel: System Information Block

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

70/153

System Information Block Structure Reference
typedef struct NETX_SYSTEM_INFO_BLOCKtag

{

uint8_t abCookie[4];
uint32_t ulDpmTotalSize;
uint32_t ulDeviceNumber;
uint32_t ulSerialNumber;
uintl6_t ausHwOptions[4];
uintl6_t usManufacturer;
uintl6_t usProductionDate;
uint32_t ulLicenseFlagsl;
uint32_t ulLicenseFlags2;
uintl6_t usNetxLicenselD;

uintl6_t usNetxLicenseFlags;

uintl6_t usDeviceClass;
uint8_t bHwRevision;
uint8 _t bHwCompatibility;
uint8_t bDevIidNumber;
uint8_t bReserved;
uintl6_t usReserved;
NETX_SYSTEM_INFO_BLOCK;

netX DPM Identification

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

"netX" cookie

DPM size (in bytes)
device number
serial number
hardware options
manufacturer
production date
license flags 1
license flags 2
license ID
license flags
device class
hardware revision

hardware compatibility
device identification

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The netX DPM Identification abCookie[4], identifies the start of the dual-port memory. It has a

length of 4 bytes and is always present if a netX firmware is running.

Note: The cookie is the last element, initialized by the firmware. The firmware ensures, if a
valid value is inserted in the cookie, all other elements of the DPM are initialized.
Variable Value Definition / Description
abCookie[4] 'netX netX Firmware cookie
'‘BOOT" netX Bootloader cookie
0xOBAD Bad memory content (HIL_SYS_BAD_MEMORY_COOKIE), memory is not
correctly mapped by the firmware or no firmware running.
OxFFFF DPM not available

Table 49: System Channel: netX Identification, netX Cookie

Dual-Port Memory Size

The size field ulDpmTotalSize holds the total size of the dual-port memory in bytes (8 Kbyte /
16 KByte / 64 KByte). The usable size may differ because each channel defines an own layout.

If the default memory layout is used, the usable size is 16 Kbyte (see section DPM Mapping on
page 65).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 71/153

Device Number

The device number given in ulDeviceNumber holds the hardware order or item number of a
device. The number is given as a hexadecimal number and follows the following format:
XXX.YYYY.ZZZ.

Example:
A value of 0x499602D2 is translated into the decimal value of 1234567890 which results in an

order number of 123.4567.890

If the value is equal to zero, the device number is not set.

Serial Number

The serial number given in ulSerialNumber holds the hardware serial number used in
conjunction with the device number to uniquely identify a device. It is a 32-bit value given as
hexadecimal number.

Example:
A value of 0x00004E21 compares to the decimal number 20021.

If the value is equal to zero, the serial number is not set.

Hardware Assembly Options (xC Port 0..3)

The assembly option defines the physical hardware interface connected to a netX xC
(Communication Controller) port. A netX chip offers up to 4 xC ports and the assembly option is an
array of 4 elements (ausHWOptions[4]) where each element holds the definition of one xC port
(Port 0..3).

The definition is necessary because each fieldbus protocol has specific requirements to the
physical interface and only with a correct assembled physical interface the communication on the
fieldbus system is possible.

Hardware Assembly Options

Variable: ausHWOptions

Value Definition / Description

0x0000 HIL_HW_ASSEMBLY_UNDEFINED

The xC port is marked UNDEFINED, if the hardware cannot be determined. This might be the case, if no
security memory / device label is found or read access to it failed.

0x0001 HIL_HW_ASSEMBLY_NOT_AVAILABLE
The xC port is not available (netX50 will show this for xC2 / xC3)
0x0003 HIL_HW_ASSEMBLY_USED

The xC port is marked used if a port is already used by another component of the netX firmware (e.g.
another protocol stack or other functionalities)

0x0010 HIL_HW_ASSEMBLY_SERIAL

A serial RS232 interface is connected to the xC port

0x0020 | HIL_HW_ASSEMBLY_ASI

The connected interface allows communication according to the AS-INTERFACE standard
0x0030 | HIL_HW_ASSEMBLY_CAN

The connected interface allows communication according to the CAN (Controller Area Network)
specification

0x0040 HIL_HW_ASSEMBLY_DEVICENET
The connected interface allows communication according to the DeviceNet specification

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 72/153

Variable: ausHWOptions

Value Definition / Description
0x0050 HIL_HW_ASSEMBLY_PROFIBUS
The connected interface allows communication according to the PROFIBUS specification
0x0070 HIL_HW_ASSEMBLY_CCLINK
The connected interface allows communication according to the CC-Link specification
0x0071 HIL_HW_ASSEMBLY_CCLINK_IE_FIELD_1GB
The connected interface allows communication via 1 GBit/s Ethernet (external Phy) according to the CC-
Link IE Field specification
0x0080 HIL_HW_ASSEMBLY_ETHERNET (internal Phy)
The connected interface allows communication via Ethernet (internal Phy)
0x0081 HIL_HW_ASSEMBLY_ETHERNET_X_PHY (external Phy)
The connected interface allows communication via Ethernet (external Phy)
0x0082 HIL_HW_ASSEMBLY_ETHERNET_FIBRE_OPTIC (internal Phy)
The connected interface allows communication via Ethernet (internal Phy) with connected fiber optics
0x0083 HIL_HW_ASSEMBLY_ETHERNET_TAP
The connected interface allows capturing from Ethernet
0x0090 HIL_HW_ASSEMBLY_SPI (Serial Peripheral Interface)
The connected interface allows communication via a SPI (Serial Peripheral Interface) interface
0x00A0 HIL_HW_ASSEMBLY_IO_LINK
The connected interface allows communication according to the 10-Link specification
0x00BO HIL_HW_ASSEMBLY_COMPONET
The connected interface allows communication according to the CompoNet specification
OxFFF4 HIL_HW_ASSEMBLY_I2C_UNKNOWN
12C is used to determine physical interface but Interface can't be determined (e.g. option module is not
connected)
OXFFF5 HIL_HW_ASSEMBLY_SSI
The physical interface is SSI conform
OXFFF6 HIL_HW_ASSEMBLY_SYNC
xC port is used for special synchronization signals
OXFFFA | HIL_HW_ASSEMBLY_TOUCH_SCREEN
xC port is connected to a touch screen interface
OXFFFB | HIL_HW_ASSEMBLY_I2C_PIO
12C is used to determine physical interface. This is used for option modules (AIFX modules) offering the
identification via I2C. If the detection of the option module succeeds, the value is replaced by the real
information from the option module.
If the module detection fails, 12C INTERFACE UNKNOWN is shown.
OXFFFC | HIL_HW_ASSEMBLY_I2C_PIO_NT (netTAP device)
12C is used to determine a physical interface on a netTAP hardware platform.
If the detection succeeds, the value is replaced by the real information from the option module
OXFFFD | HIL_HW_ASSEMBLY_PROPRIETARY
Unspecified physical interface
OXFFFE | HIL_HW_ASSEMBLY_NOT_CONNECTED
No physical interface connectable to the xC port (the xC port can only be used for chip-internal purposes)
OXFFFF RESERVED, DO NOT USE

Table 50: System Channel: Hardware Assembly Options (xC Port 0..3)

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 73/153

Manufacturer

The manufacturer code defines the manufacturer of the device (hardware)

Variable; usManufacturer

Value Definition / Description

0x0000 HIL_MANUFACTURER_UNDEFINED
Undefined manufacturer

0x0001... HIL_MANUFACTURER_HILSCHER_GMBH

Manufacturer is Hilscher Gesellschaft fiir Systemautomation mbH
Note: 0x0001...0x000FF reserved for Hilscher
... OXOOFF HIL_MANUFACTURER_HILSCHER_GMBH_MAX

Other values are usable for third party manufacturers and given by Hilscher

Table 51: System Channel: Manufacturer

Production Date

The production date entry is comprised of the calendar week and year (starting with year 2000)
when the hardware was produced. Both, year and week are shown in hexadecimal notation.

If the value is equal to zero, the manufacturer date is not set.

Variable: usProductionDate

Bit No. 15..8 = Production Year Bit No 7..0 = Production (Calendar) Week
0 - 255 (+2000) 1-52
Table 52: System Channel: Production Date

Example:
Production Date = 0x062B indicates year = 2006 / production week = 43

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

74/153

License Flags 1/ License Flags 2

License flags contain license information for the netX firmware and tools and are used to enable
functionalities which are protected by them. The flags are stored in a security memory on the

hardware and read during system startup.

If the license information fields / flags are zero, a license or license code is not set.

License Flags 1 are used to enable fieldbus master protocol stacks.

Bits O to bit 29 License flags dedicated to a specific protocol stack

Bits 30 and 31 Number of concurrent master protocol stack licenses

variable: ulLicenseFlagsl

31‘3029| s|l7|le|[s5]lal3|2]1]o0

EtherCAT Master
EtherNet/IP Scanner
SERCOS lll Master

Reserved, Set to Zero

00 = Unlimited Number of Master Licenses
01 =1 Master License

10 =2 Master Licenses

11 = 3 Master Licenses

Table 53: System Channel: License Flags 1

DeviceNet Master
AS-Interface Master
PROFINET IO RT Controller

Bit Number

PROFIBUS Master
CANopen Master

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 75/153

License Flags 2 are used for tool licensing, e. g. SYCON.net, OPC servers and drivers etc.

If a flag is set, a tool license is present.

variable: ulLicenseFlags2

31 8|76 5|4 3 ‘2 1] o0 Bit Number
SYCON.net
OPC Server
Qvis
01 = Minimum Size
10 = Standard Size
11 = Maximum Size

CoDeSys (Hilscher)
01 = Minimum Size
10 = Standard Size
11 = Maximum Size

Driver / Operating System (Host Application)

Atvise Web Server

Reserved, Set to Zero
Table 54: System Channel: License Flags 2

netXLicenselD / netXLicenseFlags

netX license ID and flags (usNetxLicenselD / usNetxLicenseFlags) are reserved for OEM
customers allowing them to integrate their own license definition.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 76/153

Device Class

The device class is used to create device groups specified by their functionality and hardware
options (e.g. used netX chip, special functionalities). This is necessary because a netX firmware
may not support all hardware devices or just one specific device.

The netX firmware file header also contains a device class definition, specifying which devices are
supported. This information can be used by host applications to verify if a given firmware will work
on a device before downloading it to the hardware.

The following hardware device classes are defined (variable usDeviceClass).

Value Definition Description

0x0000 | HIL_HW_DEV_CLASS_UNDEFINED Hardware is not defined

0x0001 | HIL_HW_DEV_CLASS_UNCLASSIFIABLE Hardware not classifiable

0x0002 | HIL_HW_DEV_CLASS_CHIP_NETX_500 netX500 chip based hardware

0x0003 HIL_HW_DEV_CLASS_CIFX All PC cards (ISA/PCI/PCle)

0x0004 | HIL_HW_DEV_CLASS_COMX_100 COMX module netX00 based

0x0005 | HIL_HW_DEV_CLASS_EVA_BOARD netX Evaluation board (e.g. NXHX51)

0x0006 HIL_HW_DEV_CLASS_NETDIMM netDIMM netX500 chip based DIMM module
0x0007 | HIL_HW_DEV_CLASS_CHIP_NETX_100 netX100 chip based

0x0008 | HIL_HW_DEV_CLASS_NETX_HMI netHMI hardware

0x0009 | reserved reserved

0x000A | HIL_HW_DEV_CLASS_NETIO_50 netlO netX50 based 1/O module

0x000B HIL_HW_DEV_CLASS_NETIO_100 netlO netX100 based I/O module

0x000C HIL_HW_DEV_CLASS_CHIP_NETX_50 netX50 based hardware

0x000D HIL_HW_DEV_CLASS_GW_NETPAC netPAC Gateway

Ox000E | HIL_ HW DEV_CLASS GW_NETTAP netTAP netX100 based Gateway

0x000F | HIL_HW_DEV_CLASS_NETSTICK netSTICK netX50 based USB stick

0x0010 | HIL_HW_DEV_CLASS_NETANALYZER netANALYZER PC card

0x0011 | HIL_HW_DEV_CLASS_NETSWITCH netSWITCH Ethernet switch

0x0012 | HIL_HW_DEV_CLASS_NETLINK netLINK network linking

0x0013 HIL_ HW _DEV_CLASS NETIC_50 netlC netX50 based DIL-32 communication IC
0x0014 HIL_HW_DEV_CLASS_NPLC_C100 netPLC netX100 based PLC PC card

0x0015 HIL_HW_DEV_CLASS_NPLC_M100 netPLC netX100 based PLC module

0x0016 HIL_HW_DEV_CLASS_GW_NETTAP_50 netTAP netX50 based Gateway

0x0017 | HIL_HW_DEV_CLASS_NETBRICK netBRICK netX100 based Gateway (IP67)
0x0018 | HIL_HW_DEV_CLASS_NPLC_T100 netPLC netX100 based PLC module (DIN rail)
0x0019 | HIL_HW_DEV_CLASS_NETLINK_PROXY netLINK proxy

0x001A HIL_HW_DEV_CLASS_CHIP_NETX_10 netX10 based hardware

0x001B | HIL_HW_DEV_CLASS NETJACK_10 netJACK netX10 based exchangeable module
0x001C | HIL_HW_DEV_CLASS NETJACK_50 netJACK netX50 based exchangeable module
0x001D | HIL_HW_DEV_CLASS NETJACK_100 netJACK netX100 based exchangeable module
0x001E | HIL_HW_DEV_CLASS_NETJACK_500 netJACK netX500 based exchangeable module
0x001F | HIL_HW_DEV_CLASS_NETLINK_10_USB netLINK netX10 based with USB connection
0x0020 | HIL_HW_DEV_CLASS_COMX_10 COMX module netX10 based

0x0021 HIL_HW_DEV_CLASS_NETIC_10 netlC netX10 based DIL-32 communication IC
0x0022 HIL_HW_DEV_CLASS_COMX_50 COMX module netX50 based

0x0023 HIL_ HW_DEV_CLASS NETRAPID_10 netRAPID netX10 based ready to solder chip-carrier
0x0024 HIL_ HW_DEV_CLASS NETRAPID_50 netRAPID netX50 based ready to solder chip-carrier

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 77/153

Value Definition Description

0x0025 | HIL_HW_DEV_CLASS_NETSCADA_T51 netSCADA netX51 based visualizing modem

0x0026 | HIL_HW_DEV_CLASS_CHIP_NETX_51 netX51 based hardware

0x0027 | HIL_HW_DEV_CLASS_NETRAPID_51 netRAPID netX51 based ready to solder chip-carrier

0x0028 HIL_HW_DEV_CLASS_GW_EU5C EU5C Gateway

0x0029 | HIL_HW_DEV_CLASS_NETSCADA_T50 netSCADA netX50 based visualizing modem

0x002A | HIL_HW_DEV_CLASS_NETSMART_50 netSMART netX50 based Smartwire module

0x002B | HIL_HW_DEV_CLASS_IOLINK_GW_51 netX51 bases |O-LINK gateway

0x002C | HIL_HW_DEV_CLASS_NETHMI_B500 netHMI netX500 based operator panel

0x002D | HIL_HW_DEV_CLASS_CHIP_NETX_52 netX52 based hardware

0x002E | HIL_HW_DEV_CLASS_COMX_51 COMX module netX51 based

0x002F | HIL_HW_DEV_CLASS_NETJACK_51 netJACK netX51 based exchangeable module

0x0030 | HIL_HW_DEV_CLASS_NETHOST_T100 netHOST netX100 based Lan controlled master

0x0031 | HIL_HW_DEV_CLASS_NETSCOPE_C100 netSCOPE netX100 based PC card

0x0032 | HIL_HW_DEV_CLASS_NETRAPID_52 netRAPID netX52 based ready to solder chip-carrier

0x0033 | HIL_HW_DEV_CLASS_NETSMART_T51 netSMART netX51 based Smartwire module

0x0034 HIL_ HW _DEV_CLASS NETSCADA T52 netSCADA netX52 based visualizing modem

0x0035 | HIL_HW_DEV_CLASS_NETSAFETY_51 netSAFETY nex51 based safety module

0x0036 | HIL_HW_DEV_CLASS_NETSAFETY_52 netSAFETY nex52 based safety module

0x0037 | HIL_HW_DEV_CLASS_NETPLC_J500 netPLC netX500 based PLC module

0x0038 | HIL_HW_DEV_CLASS_NETIC_52 netlC netX52 based (DIL-32 communication IC)

0x0039 | HIL_HW_DEV_CLASS_GW_NETTAP_151 netTAP151 dual netX51 based Gateway

0x003A | HIL_HW_DEV_CLASS_CHIP_NETX_4000_COM Device with netX 4000 (COM CPU)

0x003B | Reserved Reserved

0x003C | HIL_HW_DEV_CLASS_CHIP_NETX_90_COM Device with netX 90 (COM CPU)

0x003D | HIL_HW_DEV_CLASS_NETRAPID_51_IO netRAPID netX51 based for I/O ready to solder chip-

carrier
0x003E HIL_HW_DEV_CLASS_GW_NETTAP_151_CCIES g?tTAPlSl netX100 and netX51 based Gateway for CC-Link IE
ave
0x003F HIL_HW_DEV_CLASS_CIFX_CCIES PC cards for CC-Link IE Slave with 1 GBit Ethernet
0x0040 HIL_HW_DEV_CLASS_COMX_51_CCIES COMX module netX 51 based for CC-Link IE Field Slave with 1
GBit Ethernet

0x0041 HIL_HW_DEV_CLASS_NIOT_E_NPEX_BP52_l10 netPl Extension Base Plate netX 52 based with I/O

0x0042 HIL_HW_DEV_CLASS_NIOT_E_NPEX BP52_IOL | netPl Extension Base Plate netX 52 based with 10-Link and I/O

0x0043 HIL_HW_DEV_CLASS_CHIP_NETX_4000_COM_ Device with netX 4000 (COM CPU) and SDRAM at host
HIFSDR interface

0x0044 HIL_HW_DEV_CLASS_CHIP_NETX_4000_COM_ | Device with netX 4000 (COM CPU) and SDRAM at memory
SDR interface

0x0045 HIL_HW_DEV_CLASS_CHIP_NETX_90_COM_ Device with netX 90 (communication) and SDRAM at host
HIFSDR interface

0x0046 Reserved Reserved

(.).)-<7FFF

0x8000 Reserved Reserved

(.).)-<EFFF

OXFFFE | HIL_HW_DEV_CLASS_OEM_DEVICE OEM Device

Other values are reserved

Table 55: System Channel: Device Class

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 78/153

Hardware Revision

The hardware revision field indicates the current revision of a module. In difference to the printed
device label, the revision field counts from 1 to 35 while the printed label shows the letters A to Z
for revision numbers greater 9.

Variable: bHwRevision

Revision number | Revision Field Printed Device Label
1.9 1.9 1.9
10..35 10..35 A.Z

Table 56: System Channel: Hardware Revision

Hardware Compatibility Index

The hardware compatibility index bHwCompatibility is used to indicate incompatible hardware
changes during the life time of a hardware product. The index starts with 0 and is incremented for
every incompatible hardware change made to the hardware. The same index also exists in the
header of a netX firmware file which allows a host application to match a firmware index against a
given hardware index. This allows a host application to prevent a firmware download if necessary.

Device Identification Number

The device identification number bDevI1dNumber is intended to be used as a uniquely distinction
of hardware modules/cards from each other. This might be necessary if multiple modules/cards of
the same type are used at the same time on one host system (e.g. multiple PCI cards in a PC
system).

The creation of the identification number is hardware based and needs either a DIP switch or
Rotary switch equipped on the modules/cards. In this case the setting from the switch will be read
by the firmware and shown in the identification number.

A zero (0) indicates that no identification number was assigned to the device. The value range of
the identification number depends on the used DIP switch/Rotary switch (usually between 0..9).

Note: The Device ldentification Number is a hardware created number and the hardware
must support this option. It should not be mixed up with any addresses from a fieldbus
system (e.g. slave address on a fieldbus network).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 79/153

5.2.2 Channel Information Block

The channel information block structure holds information about the channels available in the dual-
port memory. A channel description is a 16 bytes structure and the first element (bChannel Type)
of the structure defines the channel type and therefore the corresponding channel structure.

Structure of the Channel Information Block:
Channel Information Block: NETX_ CHANNEL_INFO_BLOCK

Address | Channel Structure Name: NETX_SYSTEM_CHANNEL__INFO
0x0030 System Channel Data Type Description
uint8_t Channel Type = SYSTEM (see page 81)
uint8_t Reserved (set to zero)
uint8_t Size / Position of Handshake Registers
uint8_t Total Number of Blocks
uint32_t Size of Channel in Bytes
uintlé_t Size of Send and Receive Mailbox in Bytes
uintl6_t Mailbox Start Offset
... OX003F uint8_t[4] 4 Byte Reserved (set to zero)
Address Channel Structure Name: NETX_HANDSHAKE CHANNEL_INFO
0x0040 Handshake Channel Data Type Description
uint8_t Channel Type = HANDSHAKE (see page 81)
uint8_t[3] 3 Byte Reserved (set to zero)
uint32_t Channel Size in Bytes
... OX004F uint8_t[8] 8 Byte Reserved
Address Channel Structure Name: NETX_COMMUNICATION_CHANNEL__INFO
0x0050 Communication Channel 0 Data Type Description
uint8_t Channel Type = COMMUNICATION (see page 81)
uint8_t Channel ID, Channel Number
uint8_t Size / Position of Handshake Registers
uint8_t Total Number of Blocks in this Channel
uint32_t Size of Channel in Bytes
uintl6_t Communication Class (Master, Slave...)
uintlé_t Protocol Class (PROFIBUS, PROFINET....)
uintl6_t Protocol Conformance Class (DPV1, DPV2..)
... OXO05F uint8_t[2] 2 Byte Reserved (set to zero)
OX%(:(%%SF gommunication Channel 1,2 & Structure Same as Communication Channel 0

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

80/153

Address Channel Structure Name: NETX_APPLICATION_CHANNEL_INFO
0x0090 Application Channel 0 Data Type Description
uint8_t Channel Type = APPLICATION (see page 81)
uint8_t Channel ID, Channel Number
uint8_t Size / Position of Handshake Registers
uint8_t Total Number of Blocks in this Channel
uint32_t Size of Channel in Bytes
... OXO09F uint8_t [8] 8 Byte Reserved (set to zero)
OX%(;%%AF Application Channel 1 Structure Same as Application Channel 0

Table 57: System Channel: Channel Information Block

Structure Reference: NETX_CHANNEL_INFO_BLOCK
typedef union NETX_CHANNEL_INFO_ BLOCKtag

NETX_SYSTEM_CHANNEL__INFO

NETX_HANDSHAKE_CHANNEL_ INFO
NETX_COMMUNICAT ION_CHANNEL__INFO
NETX_APPLICATION_CHANNEL_ INFO

3 NETX_CHANNEL_INFO_BLOCK;

tSystem;
tHandshake;
tCom;

TApp;

Structure Reference: NETX_SYSTEM_CHANNEL_INFO
typedef struct NETX_SYSTEM_CHANNEL_INFOtag

{
uint8_t
uint8_t
uint8_t
uint8_t
uint32_t
uintle_t
uintlé_t
uint8_t

bChannelType;
bReserved;

bSizePositionOfHandshake;

bNumberOfBlocks;
ulSizeOfChannel;
usSizeOfMai lbox;
usMai lboxStartOffset;

abReserved[4];

3 NETX_SYSTEM_CHANNEL_INFO;

Structure Reference: NETX_HANDSHAKE_CHANNEL_INFO
typedef struct NETX_HANDSHAKE CHANNEL_INFOtag

{
uint8_t
uint8_t
uint32_t
uint8_t

} NETX_HANDSHAKE_CHANNEL_INFO;

bChannelType;
bReserved[3];

ulSizeOfChannel ;

abReserved[8];

Structure Reference: NETX_COMMUNICATION_CHANNEL_INFO
typedef struct NETX_COMMUNICATION_CHANNEL_INFOtag

uint8_t
uint8_t
uint8_t
uint8_t
uint32_t
uintle_t
uintlé_t
uintle_t
uint8_t

} NETX_COMMUNICATION_CHANNEL_ INFO;

bChannelType;
bChannel1d;

bSizePositionOfHandshake;

bNumberOfBlocks;
ulSizeOfChannel ;
usCommunicationClass;
usProtocolClass;
usConformanceClass;

abReserved[2];

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 81/153

Structure Reference: NETX_APPLICATION_CHANNEL_INFO

typedef struct NETX_APPLICATION_CHANNEL_INFOtag
{

uint8_t bChannelType;

uint8_t bChannelld;

uint8_t bSizePositionOfHandshake;

uint8_t bNumberOfBlocks;

uint32_t ulSizeOfChannel ;

uint8_t abReserved[8];
3} NETX_APPLICATION_CHANNEL_INFO;

Channel Type

This field identifies the channel type of the corresponding memory location. The following channel
types are defined.

Variable: bChannelType

Value | Definition Description

0x00 | HIL_CHANNEL_TYPE_UNDEFINED Undefined

0x01 | HIL_CHANNEL_TYPE_NOT_AVAILABLE Not available

0x02 | HIL_CHANNEL_TYPE_RESERVED Reserved

0x03 HIL_CHANNEL_TYPE_SYSTEM System Channel

0x04 | HIL_CHANNEL_TYPE_HANDSHAKE Handshake Channel
0x05 HIL_CHANNEL_TYPE_COMMUNICATION Communication Channel
0x06 | HIL_CHANNEL_TYPE_APPLICATION Application Channel
0x07 Reserved Reserved for future use
OX7F

0x80 HIL_CHANNEL_TYPE_USER_DEFINED_START | Start of user defined channels
OXFF

Table 58: System Channel: Channel Type

Channel ID, Channel Number (Communication and Application Channel Only)

The value given in bChannelld is used to enumerate the communication and application
channels. The value is unigue in the system and ranges from 0 to 7 and corresponds to the order
of a channel in the DPM (e.g. Communication Channel 0 = 0, Communication Channel 1 =1 etc.).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 82/153

Size / Position of Handshake Registers

This field identifies the position of the handshake registers and their size. The handshake registers
may be located at the beginning of the channel itself or in a separate handshake area.

The size of the handshake registers can be either 8 or 16 bit.

Variable: bSizePositionOfHandshake

Bit No. Definition / Description

0.3 Handshake Register Size
0 = HIL_HANDSHAKE_SIZE_NOT_AVAILABLE
1 = HIL_HANDSHAKE_SIZE_8BIT (default for the System Channel)
2 = HIL_HANDSHAKE_SIZE_16BIT (default for the Communication Channel)
Other values are reserved
4.7 Handshake Register Position
0 = HIL_HANDSHAKE_POSITION_BEGINNING (located at the beginning of a channel)
1 = HIL_HANDSHAKE_POSITION_CHANNEL (default: located in the handshake channel)

Other values are reserved

Table 59: System Channel: Size / Position of Handshake Registers

Total Number of Blocks

A channel consists of data blocks (e.g. mailbox and status blocks) and the number of blocks
bNumberOfBlocks indicates how many blocks are contained in the channel structure.

Size of Channel

This field ulSizeOFChannel contains the size of the entire channel in bytes.

Size of Send and Receive Mailbox (System Channel Only)

The mailbox size field usSizeOfMai Ibox holds the size of the system mailbox structure (sum of
the send / receive mailbox). While the size of the send and receive mailbox is always symmetric,
the given size must be divided by 2 to get the size of the send/receive mailbox structure.

The default size of the send/receive mailbox structure is 128 bytes (sum = 256 bytes). Each
mailbox (send & receive) consists of one field for the package counter (packages accepted /
packages waiting) and 124 bytes for the user data (see section System Mailbox on page 93).

Mailbox Start Offset (System Channel Only)

The mailbox start offset element usMai IboxStartOffset defines location (byte offset) of the
mailbox inside the system channel, starting with the send mailbox structure.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

83/153

Communication Class (Communication Channel Only)

The communication class defines functionality (e.g. Master / Slave etc.) of the fieldbus protocol
stack and can be used by an application to adapt the handling for the protocol stack.

Variable: usCommunicationClass

Value Definition Description

0x0000 | HIL_COMM_CLASS_UNDEFINED Undefined

0x0001 | HIL_COMM_CLASS_UNCLASSIFIABLE Unclassifiable

0x0002 | HIL_COMM_CLASS_MASTER Master stack

0x0003 | HIL_COMM_CLASS_SLAVE Slave stack

0x0004 | HIL_COMM_CLASS_SCANNER Scanner

0x0005 | HIL_COMM_CLASS_ADAPTER Adapter

0x0006 | HIL_COMM_CLASS_ MESSAGING Messaging (no cyclic 1/0 data)

0x0007 | HIL_COMM_CLASS_CLIENT Client

0x0008 | HIL_COMM_CLASS_SERVER Server

0x0009 | HIL_COMM_CLASS_IO_CONTROLLER 10-Controller

0X000A | HIL_COMM_CLASS_IO_DEVICE 10-Device

0x000B | HIL_COMM_CLASS_IO_SUPERVISOR 10-Supervisor

0x000C | HIL_COMM_CLASS_GATEWAY Gateway

0x000D | HIL_COMM_CLASS_MONITOR Monitor / Analyzer

O0X000E | HIL_COMM_CLASS_PRODUCER Producer

0X000F | HIL_COMM_CLASS_CONSUMER Producer

0x0010 | HIL_COMM_CLASS_SWITCH Switch

0x0011 | HIL_COMM_CLASS_HUB Hub

0x0012 | HIL_COMM_CLASS_COMBI Not used in the DPM

This value is used inside a netX firmware file header, if the
firmware file combines different protocol stacks in one file.

0x0013 | HIL_COMM_CLASS_MANAGING_NODE Managing node

0x0014 | HIL_COMM_CLASS CONTROLLED_NODE | Controlled node

0x0015 | HIL_COMM_CLASS PLC Programmable Logic Controller (PLC)

0x0016 | HIL_COMM_CLASS_ HMI Human Machine Interface (HMI)

0x0017 | HIL_COMM_CLASS_ITEM_SERVER Item server

0x0018 | HIL_COMM_CLASS_SCADA SCADA system

0x0019 | HIL_COMM_CLASS |0_CONTROLLER_SY | IO-Controller with System Redundancy
STEM_REDUNDANCY

0x001A | HIL_COMM_CLASS_10_DEVICE_SYSTEM_ | 10-Device with System Redundancy
REDUNDANCY

Other values are reserved

Table 60: System Channel: Communication Class

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

84/153

Protocol Class (Communication Channel Only)

This field defines the fieldbus protocol running on the communication channel or a specific process
like a PLC program, running on the communication channel.

Variable: usProtocolClass

Value Definition Description

0x0000 HIL_PROT_CLASS_UNDEFINED Undefined

0x0001 HIL_PROT_CLASS_3964R 3964R

0x0002 HIL_PROT_CLASS_ASINTERFACE AS Interface

0x0003 HIL_PROT_CLASS_ASCII ASCII

0x0004 HIL_PROT_CLASS_CANOPEN CANopen

0x0005 HIL_PROT_CLASS_CCLINK CC-Link

0x0006 HIL_PROT_CLASS_COMPONET CompoNet

0x0007 HIL_PROT_CLASS_CONTROLNET ControlNet

0x0008 HIL_PROT_CLASS_DEVICENET DeviceNet

0x0009 HIL_PROT_CLASS_ETHERCAT EtherCAT

0x000A | HIL_PROT_CLASS_ETHERNET_IP EtherNet/IP

0x000B | HIL_PROT_CLASS_FOUNDATION_FB Foundation Fieldbus

0x000C | HIL_PROT_CLASS_FL_NET FL Net

0x000D | HIL_PROT_CLASS_INTERBUS InterBus

0x000E | HIL_PROT_CLASS_IO_LINK 10-Link

0x000F HIL_PROT_CLASS_LON LON

0x0010 HIL_PROT_CLASS_MODBUS_PLUS Modbus Plus

0x0011 HIL_PROT_CLASS_MODBUS_RTU Modbus RTU

0x0012 HIL_PROT_CLASS_OPEN_MODBUS_TCP | Open Modbus TCP

0x0013 HIL_PROT_CLASS_PROFIBUS_DP PROFIBUS DP

0x0014 HIL_PROT_CLASS_PROFIBUS_MPI PROFIBUS MPI

0x0015 HIL_PROT_CLASS_PROFINET_IO PROFINET IO

0x0016 HIL_PROT_CLASS_RK512 RK512

0x0017 HIL_PROT_CLASS_SERCOS_lI SERCOS I

0x0018 HIL_PROT_CLASS_SERCOS_llI SERCOS 1l

0x0019 HIL_PROT_CLASS _TCP_IP_UDP_IP TCP/IP, UDP/IP

0x001A | HIL_PROT_CLASS_POWERLINK Powerlink

0x001B | HIL_PROT_CLASS_HART HART

0x001C | HIL_PROT_CLASS_COMBI Not used in the DPM
This value is used inside a netX firmware file header, if
the firmware file combines different protocol stacks in one
file.

0x001D HIL_PROT_CLASS PROG_GATEWAY Programmable Gateway
The programmable gateway function uses netSCRIPT as
programming language.

0x001E HIL_PROT_CLASS PROG_SERIAL Programmable Serial
The programmable serial protocol function uses
netSCRIPT as programming language.

0x001F HIL_PROT_CLASS PLC_CODESYS PLC: CoDeSys

0x0020 HIL_PROT_CLASS_PLC_PROCONOS PLC: ProConOS

0x0021 HIL_PROT_CLASS_PLC_IBH_S7 PLC: IBH S7

0x0022 HIL_PROT_CLASS_PLC_ISAGRAF PLC: ISaGRAF

0x0023 HIL_PROT_CLASS_VISU_QVIS Visualization: QviS

netX Dual-Port Memory Interface | Dual-Port Memory Interfac

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

e Manual
© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 85/153

Variable: usProtocolClass

Value Definition Description
0x0024 HIL_PROT_CLASS_ETHERNET Ethernet

0x0025 HIL_PROT_CLASS_RFC1006 RFC1006
0x0026 HIL_PROT_CLASS_DF1 DF1

0x0027 HIL_PROT_CLASS_VARAN VARAN

0x0028 HIL_PROT_CLASS_3S_PLC_HANDLER 3S PLC Handler
0x0029 HIL_PROT_CLASS_ATVISE Atvise

0x002A | HIL_PROT_CLASS_MQTT MQTT

0x002B | HIL_PROT_CLASS_OPCUA OPCUA

0x002C | HIL_PROT_CLASS_CCLINK_IE_BASIC CC-Link IE Field Basic
0x002D | HIL_PROT_CLASS_CCLINK_IE_FIELD CC-Link IE Field
0x002E HIL_PROT_CLASS NETWORK_SERVICES | Network Services
OxFFFO HIL_PROT_CLASS_OEM OEM, Proprietary

Other values are reserved

Table 61: System Channel: Protocol Class

Conformance Class (Communication Channel Only)

The conformance class describes an additional characteristic of a fieldbus protocol or process and
depends on the Protocol Class.

It is used to describe sub functionalities of the protocol stack like PROFIBUS DPV1/DPV2 support
or the conformance class (A/B/C) of a PROFINET protocol.

Because of protocol class dependency, values in here are specified in the corresponding
protocol/process specific manuals.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

86/153

5.2.3

System Handshake Block

The System Handshake Block is a reserved area which is intended to hold the system handshake
register and maybe used in the future.

Note:

Currently all handshake registers of all channels are located in the Handshake Channel
of the DPM.

The System Handshake Block inside a channel is not yet supported and therefore set to zero.

System Handshake Block: NETX_HANDSHAKE_CELL

Offset Type Name Description

0x00BO uint8_t t8Bit.abData[2] Reserved, setto 0

0x00B2 uint8_t t8Bit._bNetxFlags netX system channel handshake register
0x00B3 uint8_t t8Bit.bHostFlags Host system channel handshake register

Table 62: System Channel: System Handshake Block

Structure Reference - System Handshake Block
/***/

/*! Handshake cell definition

/***/

typedef _ HIL_PACKED_PRE union NETX_HANDSHAKE_CELLtag

__HIL_PACKED_PRE struct

volatile uint8_t abData[2];
volatile uint8_t bNetxFlags;
volatile uint8_t bHostFlags;

} _ HIL_PACKED POST t8Bit;

__HIL_PACKED_PRE struct

{

volatile uintl6_t usNetxFlags;
volatile uintl6_t usHostFlags;

3} _ HIL_PACKED_POST t16Bit;
volatile uint32_t ulValue;

} NETX_HANDSHAKE CELL;

*/

/*1< Data value, not belonging to handshake */
/*1< Device status flags (8Bit Mode) */
/*1< Device command flags (8Bit Mode) */

/*1< Device status flags (16Bit Mode) */
/*1< Device command flags (16Bit Mode)*/

/*1< Handshake cell value */

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 87/153

5.2.4 System Control Block

The System Control Block offers the possibility to define commands for the netX system in the
future. Those commands will be initiated by the host application.

Note: Currently no commands are defined.

System Control Block: NETX_SYSTEM_CONTROL_BLOCK
Offset Type Name Description
0x00B8 uint32_t ulSystemCommandCOS System Command Change Of State
System Reset = HIL_SYS_RESET_COOKIE to set Reset
Cookie
0x00BC uint32_t ulReserved netX 10/50/51/52/100/500: Reserved, not used, set to 0
ulSystemControl netX 90/4000/4100: ulSystemControl

Table 63: System Channel: System Control Block

Structure Reference - System Control Block

typedef struct NETX_SYSTEM_CONTROL_BLOCKtag

{
uint32_t ulSystemCommandCOS;
uint32_t ulReserved; /* ulSystemControl for netX 90/4000/4100-based firmware */

3 NETX_SYSTEM_CONTROL_BLOCK;

System Control

Note: The System Control field is used to control the system reset behavior
of netX 90/4000/4100-based systems.

variable: ul SystemControl

Bit No. Definition / Description

31..9 empty / undefined

8 Delete complete remanent data area after reset.
1 = For mode “bootstart” and “updatestart”, this value specifies that the remanent data area will be deleted.
0 = Remanent data area will not be deleted.

7.4 Reset parameter for mode “update start”
Argument evaluated during “update start”.

0x0 ... OxF = Specifies the firmware variant to be installed. 0x0 corresponds to VARO, 0x1 corresponds to
VAR1, etc.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 88/153

3.0 Reset Mode
O = HIL_SYS_CONTROL_RESET_MODE_COLDSTART
System start

The system start will perform a reset (coldstart) of the device and will start the installed firmware again.

1 = reserved
2 = HIL_SYS_CONTROL_RESET_MODE_BOOTSTART
Boot start

Note: The boot start is usable for Flash-based devices only.

The boot start will perform a reset of the device and start the maintenance firmware. The boot start can be
used to activate the maintenance firmware without starting an update process (idle mode).

3 = HIL_SYS_CONTROL_RESET_MODE_UPDATESTART
Update start

The update start will perform a reset of the device and start the maintenance firmware.
If a valid update file is available, it will be automatically processed and installed.

If no update file is available or if the update file is not valid, the maintenance firmware will change into error
mode , changes the SYS LED (to yellow on) and sets an error code (e.g. ERR_HIL_NOT_AVAILABLE,
0xC0001152).

Other values are reserved

Table 64: System Channel: System Control Field

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

89/153

5.2.5 System Status Block

The system status block provides general status information of the device and the netX firmware.

System Status Block: NETX_SYSTEM_STATUS_BLOCK

Offset Type Name Description

0X00C0 uint32._t ulSystemcos System Change Of State
General system states (see page 90)
System Status

0x00C4 uint32_t ulSystemStatus Information about file system, boot medium etc.
(see page 90)
System Error

0x00C8 uint32_t ulSystemError Indicates runtime errors of the firmware
(see page 91)
Boot Error

0x00CC uint32_t ulBootError Indicates faults during the hardware boot process
(see page 91)
Time Since Startup

0x00DO0 uint32_t ulTimeSinceStart Time elapsed since system start in seconds
(see page 91)

. CPU Load
0x00D4 uint16_t usCpuL.oad CPU Load in 0.01% units (see page 91)
0x00D6 uintl6_t usReserved Reserved, setto 0
. Hardware Features

0x00D8 uint32_t ulHWFeatures Available hardware features (see page 92)

0x00DC . Reserved

 OXOOFE uint8_t abReserved[36] Setto 0

Table 65: System Channel: System Status Block

System Status Block Structure Reference
typedef struct NETX_SYSTEM_STATUS_ BLOCKtag

uint32_t ulSystemCOS;
uint32_t ulSystemStatus;
uint32_t ulSystemError;
uint32_t ulBootError;
uint32_t ulTimeSinceStart;
uintlé_t usCpulLoad
uintle_t usReserved;
uint32_t ulHWFeatures;
uint8_t abReserved[36] ;

3 NETX_SYSTEM_STATUS_BLOCK;

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 90/153

System Change of State

The change of state field contains information about the current operating status of the system
channel.

Variable: ul SystemCOS

Bit No. Definition / Description

0..30 empty / undefined

31 DPM Memory Layout

Indicates if the DPM follows the default memory layout it set once after power up or reset.
0 = none default layout

1 =HIL_SYS_COS_DEFAULT_MEMORY

Other values are reserved

Table 66: System Channel: System Change of State

System Status

The system status holds general state information about the device, e.g. the used boot media, the
file system and its location and the supported firmware type.

Variable: ul SystemStatus

31|30 20] 28] 27|26 |25]2a] 23] 22 0 Bit Number
unused, set to zero HIL_SYS_STATUS_OK
HIL_SYS_STATUS_IDPM

HIL_SYS_STATUS_APP

Boot Medium

0000 =HIL_SYS STATUS BOOTMEDIUM_RAM

0001 =HIL_SYS_STATUS BOOTMEDIUM_SERFLASH
0010 =HIL_SYS_STATUS_BOOTMEDIUM_PARFLASH

unused, set to zero

HIL_SYS_STATUS_NO_SYSVOLUME

HIL_SYS_STATUS_SYSVOLUME_FFS
HIL_SYS_STATUS_NXO_SUPPORTED

Table 67: System Channel: System Status Field

Bit No. Definition / Description

0 Actual System State (HIL_SYS_STATUS_OK)

If set, the data in system status register is valid (for backwards compatibility)
0 = System status not valid

1 =HIL_SYS_STATUS_OK

1..21 Reserved, setto 0

22 IDPM is configured (HIL_SYS_STATUS_IDPM), for netX 90/4000/41000 only
1 =IDPM is configured
0 = IDPM is not configured

23 Application CPU is available (HIL_SYS_STATUS_APP), for netX 90/4000/41000 only
1 = Application CPU is available
0 = Application CPU Is not available

24..27 Boot Medium

0000 = RAM (HIL_SYS_STATUS_BOOTMEDIUM_RAM)
0001 = Serial Flash (HIL_SYS_STATUS_BOOTMEDIUM_SERFLASH)
0010 = Parallel Flash (HIL_SYS_STATUS_BOOTMEDIUM_PARFLASH)

Other values are reserved

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 91/153

28 Reserved, setto 0

29 System Volume (HIL_SYS_STATUS_NO_SYSVOLUME)
Indicates if the device uses a file system

0 = File system available

1 = No file system available

30 Flash File System (HIL_SYS_STATUS_SYSVOLUME_FFS)
Indicates if a flash (remanent) file system is available

0 = No flash file system available

1 =Flash file system available

31 Loadable Modules (HIL_SYS_STATUS_NXO_SUPPORTED)
Indication if the firmware supports loadable modules (NXOs)
0 = Loadable modules (NXO) not supported

1 = Loadable modules (NXO) supported

Table 68: System Channel: System Status Field Description

System Error

The system error field ul SystemError holds information about general netX firmware errors (0 =
no error).

The system error field works in conjunction with the NSF_ERROR bit in the netX System Flags
register. NSF_ERROR is used to indicate an error while the error number is shown in the system
error field. Error codes are listed in section Error codes from page 132.

Boot Error

The boot error field ulBootError is used by the Second Stage Bootloader to indicate errors
during system startup or firmware loading.

Boot loader errors are described in the Second Stage Bootloader manual and listed in section 7.

Time Since Startup

Time since startup ulTimeSinceStart is used to shows the elapsed time since the last system
start (e.g. Power-On / hardware reset). The time is given in seconds [s] and can be used to detect
unexpected system re-starts.

CPU Load

The CPU load field usCpulLoad indicates the current netX CPU usage. The value is updated every
second and has a resolution of 0.01% (e.g. a value of 10000 is equal to 100%).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 92/153

Hardware Features

The hardware features field is used to indicate additional hardware components available,
assembled on a netX device.

Variable: ulHWFeatures

31

11 | 10 9|8 7‘6 5|4 3‘2|1|o‘ Bit Number

External Memory Type
0000 = None
0001 = MRAM 64*16 Bit (1 Mbit/128 KB)

Reserved, setto 0

External Memory Access

00 = No access

01 = External access (host)

10 = Internal access

11 = External and internal access

Real-Time Clock
00 =No RTC

01 = RTC internal
10 = RTC external
11 = RTC emulated

Clock State
0 = Time not valid
1 =Time valid

Unused, set to zero

Table 69: System Channel: Hardware Features Field

Bit No. Definition / Description
0.3 External Memory Type
A netX device can provide an external memory which is independent of the DPM.
0000 = No external memory available (HIL_SYSTEM_EXTMEM_TYPE_NONE)
0001 = MRAM 128Kbyte available (HIL_SYSTEM_EXTMEM_TYPE_MRAM_128K)
4.5 Reserved, setto 0
6..7 External Memory Access
The external memory is accessible by the host application and the netX firmware.
00 = No access (HIL_SYSTEM_EXTMEM_ACCESS_NONE)
01 = External access by host (HIL_SYSTEM_EXTMEM_ACCESS_EXTERNAL)
10 = Internal access by netX (HIL_SYSTEM_EXTMEM_ACCESS_INTERNAL)
11 = External and internal (HIL_SYSTEM_EXTMEM_ACCESS_BOTH)
Note If HIL_SYSTEM_EXTMEM_ACCESS_BOTH is defined, the size of the memory is divided by 2 while
1st half of the RAM is owned by the host application and the 2" half of the RAM is owned by netX firmware.
8.9 Real-Time Clock
These bits defining if a real-time clock is equipped on the netX device. By default all netX are offering a
standard (none real-time) clock.
00 =No RTC (HIL_SYSTEM_HW_RTC_TYPE_NONE)
01 = RTC internal (HIL_SYSTEM_HW_RTC_TYPE_INTERNAL)
10 = RTC external (HIL_SYSTEM_HW_RTC_TYPE_EXTERNAL)
11 = RTC emulated (HIL_SYSTEM_HW_RTC_TYPE_EMULATED)
10 Clock State
Indicates if the clock is set or not
0 =Time not valid, not initialized or battery fault
1 =Time valid, clock was set (HIL_SYSTEM_HW_RTC_STATE)
11..31 Reserved, setto 0

Table 70: System Channel: Hardware Feature Description Field

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 93/153

5.2.6 System Mailbox

The system mailbox allows access to the system channel and the general netX firmware (operating
system services) via packet based commands. It is present as soon as the Second Stage
Bootloader or a netX firmware is running.

A host application uses the mailbox system to download a protocol stack firmware, a fieldbus
configuration or to determine the actual DPM layout if necessary, see section Non-Cyclic Data
Transfer via on page 35 for details.

The mailbox handling is described in section Non-Cyclic Data Transfer via Mailbox and Packets on
page 35.

System Send Mailbox: NETX_SYSTEM_SEND_MAILBOX

Direction: Host System = netX

Offset Type Name Description
0x0100 uintlé_t usPackagesAccepted Packages Acceptable)
- Number of packets that can be accepted by the firmware
0x0102 uintlé_t usReserved Reserved, setto 0
0x0104 .
uint8_t abSendMbx[124] Send Mailbox Buffer

OX017F Buffer to insert the send packet

Table 71: System Channel: Send Mailbox

System Receive Mailbox: NETX_SYSTEM_RECV_MAILBOX

Offset Type Name Description

. - Waiting Packages
0x0180 uint16_t usWaitingPackages Counter of packets waiting to be read by the host
0x182 uintl6_t usReserved Reserved, setto 0
0x0184 . .
Lints t abRecvMbx[124] Receive Mal_lb_ox Buffer _ _
OXO1EF - Buffer containing a packet received from the firmware

Table 72: System Channel: Receive Mailbox

Structure Reference: NETX_SYSTEM_SEND_MAILBOX

typedef struct NETX_SYSTEM_SEND MAILBOXtag
{

uintle_t usPackagesAccepted;

uintlé_t usReserved;

uint8_t abSendMbx[124] ;
} NETX_SYSTEM_SEND_MAILBOX;

Structure Reference: NETX_SYSTEM_RECV_MAILBOX
typedef struct NETX_SYSTEM_RECV_MAILBOXtag

uintle_t usWaitingPackages;
uintlé_t usReserved;
uint8_t abRecvMbx[124] ;

} NETX_SYSTEM_RECV_MAILBOX;

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

94/153

5.3 Handshake Channel

In the default layout, the Handshake Channel follows the System Channel. It holds the handshake
registers of all other channels in the DPM, providing the data transfer synchronization mechanism
between the host system and the netX firmware.

Note:

Offsets are given relative to the start offset of the channel start address.

There are three types of handshake registers.

System Handshake Registers
are used by the host system to perform reset to the netX operating system or to indicate the

current state of either the host system or the netX

Communication Channel Handshake Registers

are used to synchronize cyclic and non-cyclic data exchange over IO data images and
mailboxes for communication channels

Application Handshake Registers
are not supported yet

For compatibility reason, the handshake channel itself has a handshake register defined in the
handshake channel.

Handshake Channel - NETX_ HANDSHAKE_CHANNEL

Offset Type Element Description

0x0000 NETX_HANDSHAKE_CELL tSysFlags System Channel
Offset Type Element Description
0x0000 uint8_t abData[2] reserved, setto 0
0x0002 uint8_t bNetxFlags netX flag register
0x0003 uint8_t bHostFlags Host flag register

Offset Type Element Description

00004 NETX_HANDSHAKE_CELL thskFlags gﬁz?asizzl(tié: ler(;lrg)ils synchronization flags)
Offset Type Element Description
0x0004 uintlé_t usNSyncFlags netX flag register
0x0006 uintle_t usHSyncFlags Host flag register

Offset Type Element Description

0x0008 | NETX_HANDSHAKE_CELL tCommFlags0 Communication Channel 0
Offset Type Element Description
0x0008 uintl6_t usNetxFlags netX flag register
0Ox000A uintle_t usHostFlags Host flag register

Offset Type Element Description

0x000C NETX_HANDSHAKE_CELL tCommFlagsl Communication Channel 1
Offset Type Element Description
0x000C uintlé_t usNetxFlags netX flag register
0x000E uintl6_t usHostFlags Host flag register

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

95/153

DPM Definitions / Mapping and Content

Offset Type Element Description

0x0010 NETX_HANDSHAKE_CELL tCommFlags?2 Communication Channel 1
Offset Type Element Description
0x0010 uintlé_t usNetxFlags netX flag register
0x0012 uintl6_t usHostFlags Host flag register

Offset Type Element Description

0x0014 NETX_HANDSHAKE_CELL tCommFlags3 Communication Channel 3
Offset Type Element Description
0x0014 uintl6é_t usNetxFlags netX flag register
0x0016 uintl6é_t usHostFlags Host flag register

Offset Type Element Description

0x0018 NETX_HANDSHAKE_CELL tAppFlagsO Application Channel 0 (unused)

Offset Type Element Description

0x001E NETX_HANDSHAKE_CELL tAppFlagsl Application Channel 1 (unused)

Offset Type Element Description

0x0020 uint32_t aulReserved[56] | Reserved, setto 0

Table 73: Handshake Channel: Handshake Channel Layout

Structure Reference: NETX_ HANDSHAKE_CHANNEL
typedef struct NETX_HANDSHAKE_ CHANNELtag

{

}

NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
NETX_HANDSHAKE_CELL
uint32_t

NETX_HANDSHAKE_CHANNEL ;

tSysFlags;
tHskFlags;
tCommFlagso0;
tCommFlagsl;
tCommFlags2;
tCommFlags3;
tAppFlagso0;
tAppFlagsl;

aulReserved[56];

/*
/*
/*
/*
/*
/*
/*
/*

Structure Reference: NETX_HANDSHAKE_CELL
typedef union NETX_HANDSHAKE_ CELLtag

struct
{
volatile uint8_t abData[2]; /*
volatile uint8_t bNetxFlags; /*
volatile uint8_t bHostFlags; /*
} t8Bit;
struct
{
volatile uintl6_t usNetxFlags; /*
volatile uintl6_t usHostFlags; /*
} tl6Bit;

volatile uint32_t ulValue;
3} NETX_HANDSHAKE_CELL ;

/*

system handshake flags
synchronization flags
channel 0 handshake flags
channel 1 handshake flags
channel 2 handshake flags
channel 3 handshake flags
not supported yet

not supported yet

*/
*/
*/
*/
*/
*/
*/
>/

Data value, not belonging to handshake */
Device status flags (8Bit Mode) */
Device command flags (8Bit Mode) */

Device status flags (16Bit Mode) */
Device command flags (16Bit Mode)*/

Handshake cell value */

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

96/153

5.4 Communication Channel

The Communication Channel contains data structures and information about the fieldbus protocol
stack running on a channel.

Note:

Offsets are given relative to the start offset of the channel start address.

Structure of the Communication Channel

Communication Channel: NETX_DEFAULT_COMM_CHANNEL / NETX_8K_DPM_COMM_CHANNEL

Offset Type Name Description
Reserved
0x0000 NETX_HANDSHAKE_BLOCK tReserved For details, see section Channel
Handshake Block (page 98).
Common Control Block
0x0008 NETX_CONTROL_BLOCK tControl For details, see section Common Control
Block (page 99).
Common Status Block
0x0010 NETX_COMMON_STATUS_BLOCK tCommonStatus For details, see section Common Status
Block (page 101).
Extended Status Block
0x0050 NETX_EXTENDED_STATUS_BLOCK | tExtendedStatus For details, see section Extended Status
Block (page 110).
Send Mailbox
0x0200 NETX_SEND_MAILBOX_BLOCK tSendMbx For details, see section Channel Mailbox
(page 116).
Receive Mailbox
0x0840 NETX_RECV_MAILBOX_BLOCK tRecvMbx For details, see section Channel Mailbox
(page 116).
O0X0ES0 | uints_t abPd1output[64] | High Priority Output Data Image 1
(not supported, yet)
OXOECO | uint8_t abPd11nput[64] High Priority Input Data Image 1
(not supported, yet)
0x0F00 uint8_t abReservedl1[256] | Reserved, setto O
16 KB Layout (default layout)
Output Data Image O
0x1000 uint8_t abPdOOutput[5760] For details, see section Input / Output
Process Data Image (page 118).
Input Data Image O
0x2680 uint8_t abPdOInput[5760] For details, see section Input / Output
Process Data Image (page 118).
8 KByte Layout
Output Data Image O
0x1000 uint8_t abPdOOutput[1536] For details, see section Input / Output
Process Data Image (page 118)
Input Data Image O
0x1600 uint8_t abPdOInput[1536] For details, see section Input / Output
Process Data Image (page 118).

Table 74: COMM Channel: Communication Channel Layout

#define NETX_I10_DATA_SIZE 5760 /* 1/0 data size in bytes for 16KByte DPM */
#define NETX_10_DATA SIZE_8K DPM 1536 /* 1/0 data size in bytes for 8KByte DPM */
#define NETX_HP_10_DATA_SIZE 64 /* Default size of the high prio 1/0 data */

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 97/153

Structure Reference: Communication Channel (16Kbyte Layout)
typedef struct NETX_DEFAULT_COMM_CHANNELtag

{
NETX_HANDSHAKE_BLOCK

NETX_CONTROL_BLOCK
NETX_COMMON_STATUS_BLCOK
NETX_EXTENDED_STATUS_BLOCK
NETX_SEND_MAILBOX_BLOCK
NETX_RECV_MAILBOX_BLOCK
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

} NETX_DEFAULT_COMM_CHANNEL ;

tReserved;

tControl;

tCommonStatus;

tExtendedStatus;

tSendMbx;

tRecvMbx;
abPd10utput[NETX_HP_10_DATA_SIZE];
abPd1Input[NETX_HP_10_DATA_SIZE];
abReservedl1[256];
abPdOOutput[NETX_10_DATA SIZE];
abPdOInput[NETX_10_DATA_SIZE];

Structure Reference: Communication Channel (8Kbyte Layout)
typedef struct NETX_8K_DPM_COMM_CHANNEL tag

NETX_HANDSHAKE_BLOCK
NETX_CONTROL_BLOCK
NETX_COMMON_STATUS_BLCOK
NETX_EXTENDED_STATUS_BLOCK
NETX_SEND_MAILBOX_BLOCK
NETX_RECV_MAILBOX_BLOCK
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

} NETX_8K_DPM_COMM_CHANNEL ;

tReserved;

tControl;

tCommonStatus;

tExtendedStatus;

tSendMbx;

tRecvMbx;
abPd10utput[NETX_HP_10_DATA_ SIZE];
abPd1Input[NETX_HP_10_DATA_SIZE];
abReservedl1[256];
abPdOOutput[NETX_10_DATA_SIZE 8K_DPM];
abPdOInput[NETX_10_DATA_SIZE 8K DPM];

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

98/153

5.4.1

The Channel

Channel Handshake Block

Handshake Block is a reserved area which is intended to hold the channel
handshake register and may be used in the future.

Note:

Currently the handshake registers of all channels are located in the Handshake
Channel of the DPM.

The Channel Handshake Block inside a channel is not yet supported and therefore set to zero.

System Handshake Block: NETX_HANDSHAKE_CELL

Offset Type Name Description
0x0000 uintl6_t t16Bit.usNetxFlags netX channel handshake register
0x0003 uintle_t tl6Bit.usHostFlags Host channel handshake register

Table 75: COMM Channel: System Handshake Block

Structure Reference - Channel Handshake Block

/***/

/*! Handshake cell definition

/***/

typedef _ HIL_PACKED_PRE union NETX_HANDSHAKE_CELLtag

__HIL_PACKED_PRE struct

volatile uint8_t abData[2];
volatile uint8_t bNetxFlags;
volatile uint8_t bHostFlags;

} _ HIL_PACKED POST t8Bit;

__HIL_PACKED_PRE struct

volatile uintl6_t usNetxFlags;
volatile uintl6_t usHostFlags;

3} _ HIL_PACKED_POST t16Bit;

volatile uint32_t ulValue;
} NETX_HANDSHAKE_CELL;

/*1< Handshake cell value */

*/

/*1< Data value, not belonging to handshake */
/*1< Device status flags (8Bit Mode) */
/*1< Device command flags (8Bit Mode) */

/*1< Device status flags (16Bit Mode) */
/*1< Device command flags (16Bit Mode)*/

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 99/153

54.2 Common Control Block

The control block of the communication channel holds a command cell (ulApplicationC0S),
which can be passed to the protocol stack by using the COS (Change of State) mechanism and a
watchdog element, allowing a netX firmware to supervise the host application and vice versa.

Control Block: NETX_CONTROL_BLOCK

Offset Type Name Description

0x0008 uint32_t ulApplicationCOS Application Change Of State
- READY

- BUS ON

- INITIALIZATION

- LOCK CONFIGURATION

0x000C uint32_t ulDeviceWatchdog Device Watchdog

Watchdog counter necessary for the handling and
supervision

(see page 101)

Table 76: COMM Channel: Communication Control Block

Structure Reference - Communication Control Block
typedef struct NETX_CONTROL_BLOCKtag
uint32_t ulApplicationCOS;

uint32_t ulDeviceWatchdog;
3} NETX_CONTROL_BLOCK;

Application Change of State Register

The Application Change of State (ulApplicationCOS) is a bit field. The host application uses
this field in order to send commands to the communication channel synchronized by the COS
mechanism described in section 4.3.

ulApplicationCOS - Host writes, netX reads

31 9 8 7 6 5 4 3 2 1 0

HIL_APP_COS_APPLICATION_
READY

HIL_APP_COS_BUS_ON
HIL_APP_COS_BUS_ON_ENABLE
HIL_APP_COS_INITIALIZATION
HIL_APP_COS_INITIALIZATION_ENABLE
HIL_APP_COS_LOCK_CONFIGURATION
HIL_APP_COS_LOCK_CONFIGURATION_ENABLE
HIL_APP_COS_DMA

HIL_APP_COS_DMA ENABLE

unused, set to zero
Table 77: COMM Channel: Application Change of State

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 100/153

Application Change of State Flags (Application = netX System)

Bit No.

Description

0

APPLICATION READY Flag (HIL_APP_COS_APPLICATION_READY)
Application ready is used to signal a protocol stack a host application is working with the DPM.

0 = Host application not Ready
1 = Host application Ready

BUS ON Flag (HIL_APP_COS_BUS_ON)
The Bus On flag is used to signal a protocol stack to start/stop communication on the fieldbus network.

0 = Bus OFF, network communication is inactive (stopped)
1 = Bus ON, network communication is active (should be activated)

Note: This flag is used in conjunction with the protocol stack configuration which can be set to "manual start
of the network communication”.

BUS ON ENABLE Flag (HIL_APP_COS_BUS_ON_ENABLE)
The Bus On Enable flag defines if the HIL_APP_COS_BUS_ON flag will be evaluate and executed by the
protocol stack.

0 =HIL_APP_COS_BUS_ON flag evaluation disabled
1 =HIL_APP_COS_BUS_ON flag evaluation enabled

INITIALIZATION Flag (HIL_APP_COS_INITIALIZATION)

The Initialization flag is used to re-initialize a protocol stack. If the command is recognized, all network
connections are closed immediately and restarted by using the available configuration.

0 = No re-initialization

1 = Re-initialization activated

Note: If the database is locked by HIL_APP_COS_LOCK_CONFIGURATION, re-initializing the channel is not
allowed and rejected by the protocol stack.

INITIALIZATION ENABLE Flag (HIL_APP_COS_INITIALIZATION_ENABLE)
The Initialization Enable flag is used to enable the evaluation of HIL_APP_COS_INITIALIZATION flag.

0 =HIL_APP_COS_INITIALIZATION flag evaluation disabled
1 =HIL_APP_COS_INITIALIZATION flag evaluation enabled

LOCK CONFIGURATION Flag (HIL_APP_COS_LOCK_CONFIGURATION)

If this bit is set, the protocol stack configuration is locked and the host system does not allow the firmware to
reconfigure the communication channel.

0 = Configuration is unlocked, reconfiguration of the stack allowed
1 = Configuration is locked, reconfiguration is not allowed

LOCK CONFIGURATION ENABLE Flag (HIL_APP_COS_LOCK_CONFIGURAT ION_ENABLE)

The Lock Configuration Enable flag is used to enable the evaluation of the
HIL_APP_COS_LOCK_CONFIGURATION flag.

0 =HIL_APP_COS_LOCK_CONFIGURATION flag evaluation is disabled
1 =HIL_APP_COS_LOCK_CONFIGURATION flag evaluation is enabled

DMA MODE Flag (HIL_APP_COS_DMA)

The host system sets this flag in order to turn on DMA (Direct Memory Access) transfer of the cyclic process
data image between the host and the netX hardware.

0 = DMA mode disabled
1 = DMA mode enabled

Note: DMA mode only available on PCl and PCle based hardware (e.g. CIFX50 / CIFX50e)

DMA MODE ENABLE Flag (HIL_APP_COS_DMA_ENABLE)
The DMA Mode Enable flag is used to enable the evaluation of the HIL_APP_COS_DMA flag.

0 =HIL_APP_COS_DMA flag evaluation is disabled
1 =HIL_APP_COS_DMA flag evaluation is enabled

9..

31

Reserved, setto 0

Table 78: COMM Channel: Application Change of State Description

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

101/153

Device Watchdog

The device watchdog counter ulDeviceWatchdog is one part of the communication channel
watchdog mechanism. The second part ulHostWatchdog is located in the status block of the

channel.

5.4.3

Common Status Block

The common status block contains information common to all fieldbus protocol stacks and is
always present.

Common Status Block: NETX_COMMON_STATUS_BLOCK
Offset Type Name Description
0x0010 uint32_t | ulCommunicationCOS Communication Change of State
- READY / RUN
- RESET REQUIRED / NEW CONFIG AVAILABLE
- CONFIG LOCKED
0x0014 uint32_t ulCommunicationState | Communication State
- OFFLINE / STOP / IDLE / OPERATE
0x0018 uint32_t ulCommunicationError | Communication Error
Protocol Stack error number
0x001C uintl6é_t usVersion Version
Version Number of this structure (e.g. 0x0002)
0x001E uintl6é_t usWatchdogTime Watchdog Time
Configured watchdog time given in milliseconds [ms]
0x0020 uints_t bPDInHskMode Handshake Mode
Configured input process data handshake mode
0x0021 uint8_t bPDInSource Input Handshake Event Source
0x0022 uint8_t bPDOutHskMode Handshake Mode
Configured output process data handshake mode
0x0023 uint8_t bPDOutSource Output Handshake Event Source
0x0024 uint32_t ulHostWatchdog Host Watchdog
Host watchdog counter used for watchdog handling
0x0028 uint32_t ulErrorCount Error Count
Total Number of Detected Errors Since Power-Up or Reset (see
page 107)
0x002C uint8_t bErrorLogind Number of Entries in the internal error log
Not supported yet
0x002D uint8_t bErrorPDINCnt Input process data handshake error counter
0x002E uint8_t bErrorPDOUtCNt Output process data handshake error counter
0x002F uint8_t bErrorSyncCnt Synchronization handshake error counter
0x0030 uintd_t bSyncHskMode Synchronization Handshake Mode
0x0031 uintd_t bSyncSource Synchronization Source
0x0032 uintlé_t ausReserved[3] Reserved
Setto 0
0x0038 union uStackDepended Common state information master protocol stacks
NETX_MASTER_STATUS tMasterStatusBlock | Common master protocol stack state information
uint32_t aulReserved[6] Reserved, set to zero for slave protocols

Table 79: COMM Channel: Common Status Block

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

102/153

Structure Reference - Common Status Block
typedef struct NETX_COMMON_STATUS_ BLOCKtag

{

uint32_t
uint32_t
uint32_t
uintlé_t
uintlé_t
uint8_t
uint8_t
uint8_t
uint8_t
uint32_t
uint32_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uintlé_t
union

NETX_MASTER_STATUS tMasterStatusBlock;
aulReserved[6]; /* otherwise

uint32_t

ulCommunicationCOS;
ulCommunicationState;
ulCommunicationError;
usVersion;
usWatchdogTime;
bPDInHskMode;
bPDInSource;
bPDOutHskMode ;
bPDOutSource;
ulHostWatchdog;
ulErrorCount;
bErrorLogind;
bErrorPDINCnt;
bErrorPDOutCnt;
bErrorSyncCnt;
bSyncHskMode ;
bSyncSource;
ausReserved[3];

} uStackDepended;

3 NETX_COMMON_STATUS_BLOCK;

reserved

/* for master implementation */

*/

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 103/153

Communication Change of State Register

The Communication Change of State register is a bit field, containing information about the current
operating status of the communication channel and its firmware.

The state information is exchanged between the netX firmware and the host by using the COS
(Change of State) mechanism described in section 4.3.

ulCommunicationCOS — netX writes, Host reads

31‘

8 7 6 5 4 3 2 1 0 Bit Number

HIL_COMM_COS_READY
HIL_COMM_COS_RUN
HIL_COMM_COS_BUS_ON
HIL_COMM_COS_CONFIG_LOCKED
HIL_COMM_COS_CONFIG_NEW
HIL_COMM_COS_RESTART_REQUIRED
HIL_COMM_COS_RESTART REQUIRED_ENABLE
HIL_COMM_COS_DMA

Unused, set to zero

Table 80: COMM Channel: Communication State of Change Register

Communication Change of State Flags (netX System = Application)

Bit No. Definition / Description
0 READY Flag (HIL_COMM_COS_READY)
The READY flag indicates if the protocol stack on the given channel is started properly. In this state the
stack is ready to accept a configuration or other commands from the host application.
0 = not READY (protocol stack not started/working)
1 = READY (protocol stack is started)
1 RUNNING Flag (HIL_COMM_COS_RUN)
The RUNNING flag indicates a configured protocol stack, able to start a network communication.
Only if both, the READY and RUNNING flag are set, the protocol stack is started and configured.
0 = not RUNNING (not configured)
1 =RUNNING (protocol stack is configured)
Note: The fieldbus configuration defines if a READY and RUNNING protocol stack will automatically start
the network communication.
2 BUS ON Flag (HIL_COMM_COS_BUS_ON)
The BUS ON flag indicates the actual state of the fieldbus network communication.
0 = Bus OFF (fieldbus communication not started)
1 = Bus ON (fieldbus communication started)
The fieldbus configuration defines if the network communication will start automatically or if it has to be
started by the host application (see COMMON_CONTROL_BLOCK->ulApplicationCOS).
Also a wrong configuration may prevent the start of the network communication.
3 CONFIGURATION LOCKED Flag (HIL_COMM_COS_CONFIG_LOCKED)
The CONFIGURATION LOCKED flag indicates if the fieldbus configuration is protected and the protocol
stack is not allowed to execute a re-initialization with another configuration.
0 = Configuration not locked
1 = Configuration is locked
Locking is controlled by the host application (see COMMON_CONTROL_BLOCK->ulApplicationCO0S).
Note: An application has to make sure to disable the configuration locking before executing a channel reset
or re-initialization (see COMMON_CONTROL_BLOCK->ulApplicationC0S)

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 104/153

Bit No. Definition / Description

4 CONFIGURATION NEW Flag (HIL_COMM_COS_CONFIG_NEW)

The CONFIGURATION NEW flag is set by the protocol stack to indicate that a new configuration became
available, which has not been activated yet.

0 = No new configuration available
1 = A new configuration is available

This flag may be set together with the RESTART REQUIRED flag.

5 RESTART REQUIRED Flag (HIL_COMM_COS_RESTART_REQUIRED)

The RESTART REQUIRED flag is set by the protocol stack as an indication of a changed configuration,
either received by a host download or an upload via the fieldbus network. A new configuration will only be
activated if the host restarts the protocol stack in such a case.

0 = No restart required, no new configuration
1 = Restart required, new configuration available

This flag is used together with the RESTART REQUIRED ENABLE flag.

6 RESTART REQUIRED ENABLE Flag (HIL_COMM_COS_RESTART_REQUIRED_ENABLE)

The RESTART REQUIRED ENABLE flag enables the evaluation of the RESTART REQUIRED flag by the
host.

0 = Restart disabled
1 = Restart enabled

7 DMA Mode Flag (HIL_COMM_COS_DMA)

The protocol stack sets this flag in order to signal the host application that DMA (Direct Memory Access)
mode is turned on and used to transfer the cyclic process data images between the host system and the
netX firmware.

0 = DMA mode off (default)
1 = DMA mode on

Note: DMA mode is only available on PCI and PCle based hardware (e.g. CIFX50 / CIFX50e)

8..31 Reserved, setto 0

Table 81: COMM Channel: Communication State of Change Description

Communication State

The Communication State field ulCommunicationState contains information about the current
network state.

Note: Depending on fieldbus protocol, not all of the defined states are always available or
may have different meanings.

Value Definition General Description

0x00000000 Unknown Current network state is unknown

0x00000001 Offline No valid configuration / no network communication

0x00000002 Stop Communication stopped by the user application or an error during
the network communication.

0x00000003 Idle Protocol stack is configured but has not reached operating state.
No cyclic data exchanged on the bus system

0x00000004 Operate Network communication is active, data exchange on the network
is activated

Other values are reserved

Table 82: COMM Channel: Communication State

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 105/153

Communication Channel Error

ulCommunicationError holds the current error code of the communication channel (protocol
stack). An error is also indicated by the NCF_ERROR flag in the communication channel
handshake register.

If the cause of the error is resolved, the communication error field is set to 0 again.

Note: Error codes can be protocol specific and are described in the corresponding manual.
Default system errors are listed in section Error codes from page 132.

Structure Version

The version field usVersion holds the actual version number of the Common Status Block
structure. The structure number is used to indicate changes in the structure.

Value Definition / Description

0x0000 Undefined

0x0001 First version of the structure layout

0x0002 Second version of the structure layout (current)

The layout was extended by the following data
bPDInHskMode, bPDInSource,
bPDOutHskMode, bPDOutSource
bErrorLoglind, bErrorPDINCnt, bErrorPDOutCnt, bErrorSyncCnt
bSyncHskMode, bSyncSource

Table 83: COMM Channel: Common Status Block Structure Version

Watchdog Timeout

The watchdog timeout field usWatchdogTime holds the configured watchdog timeout value in
milliseconds [ms]. This value is set by the fieldbus configuration (default = 1000ms).

The application can use the value to setup their watchdog trigger interval accordingly. If the
application has activated the watchdog it must trigger the watchdog at least once during the given
watchdog time. Otherwise the protocol stack will interrupt all network connections immediately
regardless of their current state.

A watchdog fault will be indicated by the NCF_ERROR flag and a corresponding error is inserted in
ulCommunicationError.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 106/153

Handshake Mode / Sources and Error Counters

Input and output data images can be driven in different handshake modes, while each mode also
allows configuring a so called synchronization source (not supported yet) and offers an error
handshake counter.

The following elements are used to indicate the actual configured mode / synchronization source
and handshake error for each image.

For details of the handshake mechanism refer to section Cyclic Data Transfer via Input/Output
Data Areas on page 49.

Image Type Variable Description
INPUT uint8_t bPD InHskMode Input data image Handshake mode
Indicates the actual configured handshake mode for the input data
image
uint8_t bPDINnSource Input data synchronization source definition

Is intended to be used as an indicator of the actual configured input
data synchronization source. This must be supported by the fieldbus
protocol stack.

uint8_t bErrorPDINCnt Input data handshake errors

Depending on the configured handshake mode, it is possible the
protocol stack is not able to signal new input data, because the host
application has not acknowledged a previous state and therefore
access to the image is not allowed by the stack.

In this case, the protocol stack would increment this counter to signal
a missed update.

OUTPUT |uint8_t bPDOutHskMode Output data image Handshake mode

Indicates the actual configured handshake mode for the output data
image

uint8_t bPDOutSource Output data synchronization source definition

Is intended to be used as an indicator of the actual configured output
data synchronization source. This must be supported by the fieldbus
protocol stack.

uint8_t bErrorPDOUtCnt | Output data handshake errors

Depending on the configured handshake mode, it is possible the
protocol stack needs new output data for the next network transfer.
If the host application is not quick enough to deliver the data, the
protocol stack would increment this counter to signal the missing
update.

Table 84: COMM Channel: Handshake Mode

Value Definition / Description

0x00 For compatibility reasons
This value is identical to 0x04 — Buffered Host Controlled 10 Data Transfer

0x02 Buffered Device Controlled 10 Data Transfer
0x03 Uncontrolled Mode
0x04 Buffered Host Controlled 1O Data Transfer

Other values are reserved
Table 85: COMM Channel: Handshake Mode values

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 107/153

Host Watchdog

The host watchdog field ulHostWatchdog is used together with the Common Control Block
ulDeviceWatchdog field for the handling of the netX watchdog functionality.

For details on the watchdog function, refer to sections Channel Watchdog (page 130) and
Common Status Block (page 101).

Error Count

This ulErrorCount field holds the total number of errors detected since power-up, respectively
after reset. The protocol stack counts all sorts of errors in this field no matter if they were network
related or caused internally.

After power cycling, reset or channel initialization this counter is being cleared again.

Error Log Indicator (not supported yet)

The error log indicator field bErrorLoglnd is created for later use, when the netX firmware
supports an internal error logging array. In this case, the field will show the number of entries in the
logging array and if all entries are read from the log, the field is set to zero.

Extended Synchronization

A protocol stack may offer additional synchronization options, not depending on the input / output
data transfer synchronization and handled by dedicated synchronization flags.

Note: The extended synchronization mechanism is described in an own manual and must be
supported by the fieldbus protocol stack.

These options could be the synchronization with the network bus cycle or an external hardware
trigger. For such options the following three elements are defined to indicate the actual
configuration, the source of the sync signal and an error counter.

Type Variable Description

uint8_t bErrorSyncCnt Number of synchronization handshake errors

Depending on the configuration the error counter is used if the sync
information could not be updated because of a missing acknowledgement.

uint8_t bSyncHskMode Synchronization Handshake Mode
Configured mode of the synchronization (host controlled / device
controlled)

uint8_t bSyncSource Synchronization Source

Definition of the sync source (bus cycle / hardware trigger etc.)
Table 86: COMM Channel: Extended Synchronization

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 108/153

543.1 Master State Information

The master state information structure NETX_MASTER_STATUS offers common information for all
master protocol stacks.

Note: This structure is not available for slave protocols and set to zero.

Master Status: NETX_MASTER_STATUS

Start Offset Type Name Description
0x0038 uint32_t ulSlaveState Common Slave State

0 = HIL_SLAVE_STATE_UNDEFINED
1 = HIL_SLAVE_STATE_OK
2 = HIL_SLAVE_STATE_FAILED

0x003C uint32_t ulSlaveErrLogind Number of entries in the internal error log array (not
supported yet)

0 = no error entry

0x0040 uint32_t ulNumOfConfigSlaves Number of configured slave devices in the master
configuration.
0 = no configured slaves

0x0044 uint32_t ulNumOfActiveSlaves Number of activated slave devices, the master has an

open connection to.
0 = no active slaves

0x0048 uint32_t ulNumOfDiagSlaves Number of slaves reporting diagnostic issues
0 = no slaves with diagnostic information
0x004C uint32_t ulReserved Reserved, setto 0

Table 87: COMM Channel: Master State Information

Master Status Structure Reference
typedef struct NETX_MASTER_STATUStag

{
uint32_t ulSlaveState; /* slave state =/
uint32_t ulSlaveErrLoglind; /* slave error log Indicator */
uint32_t ulNumOfConfigSlaves; /* number of configured slaves */
uint32_t ulNumOfActiveSlaves; /* number of activated slaves */
uint32_t ulNumOfDiagSlaves; /* number of faulted slaves */
uint32_t ulReserved; /* */

} NETX_MASTER_STATUS;

Common Slave State

The Common Slave State field ulSlaveState is a collective indication on whether the master is
in cyclic data exchange to all configured slaves or not.

If there is at least one slave missing or one of the slaves has pending diagnostic information, the
status is changed to HIL_SLAVE_STATE_FAILED.

For protocols that only support packet based (non-cyclic) communication, the slave state is set to
HIL_SLAVE_STATE_OK as soon as a valid configuration is found.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 109/153

Slave Error Log Indicator

Not supported yet and reserved for later use if the firmware supports an internal error log array.
The field will indicate the number of entries in the log array and is set to zero if all log entries have
been read by the host application.

Number of Configured Slaves

ulNumOfConfigSlaves indicates number of slave devices configured in the master
configuration.

Number of Active Slaves

ulNumOTActiveSlaves indicates the number of slaves, the master has an active communication
to. Ideally this number is equal to the number of configured slaves, if all configured slaves are
connected to the networks and working without problems.

For certain fieldbus systems, it could be possible that a slave is shown as active, but still has a
problem in terms of a diagnostic issue.

Number with Diagnostic Information

ulNumOfDiagSlaves indicates how many slaves are missing on the network or reporting a
diagnostic issue.

Slave diagnostic is reset if it was read by the master or host application. If all configured slaves are
on the network and no more diagnostic information is pending, the field is set to zero.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 110/153

544 Extended Status Block

The Extended Status Block contains protocol stack specific information, not common to all fieldbus
protocols, given in abExtendedStatus[] and, if supported by the protocol stack, additional
definitions in a structured descriptor table tExtStateField.

The idea behind the descriptor table is the free definition of memory areas inside the input/output
image of the process data. This allows an application to parse the descriptor table, if available, and
locating additional information inside the input /output image areas.

An example for such additional information is the List of Configured Slaves (Bit Field).

Overview Extended State Field Structure

Communication Extended Extended State
Channel 0 Status Block Field

0X0000 5 P
0X0008 reserve / - reserved

Control Block / Reserved - OXOOFF
0x0010 / - bNumStateStructs (0..32)

to maintain - 0x0100
/ bStateArea
R compatibity to - SerypeD
/ existing definitions Pid usNumOfStateEntries
0X0050 ~ (0..65535)

0x00FC

ulStateOffset

0x0108

bStateArea
Extended Status bStateTypelD

Block usNumOfStateEntries
Extended (0..65535)
State Field

ulStateOffset

0x0200 NETX_EXTENDED_STATE_FIELD_T

0x0120 bStateArea

N bStateTypelD

Ny usNumOfStateEntries
Send Mailbox N (0..65535)

\ ulStateOffset
0x0840

\ 0x0128 bStateArea
\ bStateTypelD
\ usNumOfStateEntries
Receive Mailbox \ (0..65535)

\ ulStateOffset

\
\ 0x0140 bStateArea

bStateTypelD

usNumOfStateEntries
\ (0..65535)

\ ulStateOffset

\ 0x01F8 bStateArea

\ bStateTypelD
\ usNumOfStateEntries
\ (0..65535)

\ ulStateOffset

Figure 16: COMM Channel: Overview - Extended State Field Structure

0 DPM structure of the communication channel
@ Extended status block inside the communication channel

9 Organization of the extended state field structure

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 111/153

Extended Status Block

The Extended Status Block is a byte array of 432 byte. This array is divided into the Extended
Status Area, which is protocol specific, and the Extended State Field.

Extended Status Block: NETX_EXTENDED_STATUS_BLOCK

Offset Type Name Description
0x0050 uint8_t abExtendedStatus[NETX_EXT_STATE_SIZE]; Extended Status Block

Protocol stack specific status area
(max. 432byte)

... OXO1FF Unused Space is Set to Zero
Table 88: COMM Channel: Extended Status Block Definition

Structure Reference - Extended Status
typedef struct NETX_EXTENDED STATUS BLOCKtag

uint8_t abExtendedStatus[NETX_EXT_STATE_SIZE]; /* Extended status buffer */
} NETX_EXTENDED_STATUS_BLOCK;

Extended Status Area

The definition of the Extended Status Area (abReserved[172]) is specific to the protocol stack
and contains additional information about network status (i.e. flags, error counters, events etc.).
The exact definition of this structure can be found in the corresponding protocol stack APl manual.
This size of the structure is 172 bytes.

Note: Depending on the protocol stack, the status block is supported or not and it is defined
in the specific protocol stack manual.

Structure Reference - Extended Status Block / Extended State Field Definition

Extended State Field Definition: NETX_EXTENDED_STATE_FIELD_DEFINITION_T

Offset Type Name Description
0x0050 uint8_t abReserved[172] |Extended Status Area
Protocol stack specific status area
0x00FC NETX_EXTENDED_STATE_FIELD_T |tExtStateField Extended State Field Structure
... OXO1FF Unused Space is Set to Zero

Table 89: COMM Channel: Extended Status Block Structure
typedef struct NETX_EXTENDED_STATE_FIELD_DEFINITION_Ttag
uint8_t abReserved[172]; /* Protocol specific information area */

NETX_EXTENDED_STATE_FIELD T tExtStateField; /* Extended status structures */
3} NETX_EXTENDED_STATE_FIELD_DEFINITION T;

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 112/153

Extended State Field Structure
The Extended State Field Structure is a collection of descriptor definitions, where each entry
describes the content and the size of additional memory areas in the DPM.

This location is used to maintain various protocol, device or implementation specific state fields.
The Status Structures contain definitions in terms of type, number of valid entries and start offset of
these fields in the communication channel.

If the status information is configured to be located in the IO data image of a channel, the status
information and the 10 data image are consistent and updated together.

Structure Reference - Extended Status Block / Extended State Field Structure
Extended State Field: NETX EXTENDED STATE FIELD T

Offset Type Name Description
0x00FC uint8_t abReserved[3] Reserved, set to zero
O0X00FF uint8_t bNumOfStateStruct | Number of Status Structures

Number of valid structure definitions in the
following atStateStruct[] array

0x0100 NETX_EXTENDED_STATE _ atStateStruct[24] Status structure with a maximum of
STRUCT_T HIL_EXT_STS_MAX_STRUCTURES (24)
elements

... OXO1FF Unused Space is Set to Zero
Table 90: COMM Channel: Extended State Field Structure

typedef struct NETX_EXTENDED_ STATE_FIELD_ Ttag

uint8_t bReserved[3]; /* 3 Bytes preserved. Not used. */
uint8_t bNumStateStructs; /* Number of following state structures */
NETX_EXTENDED_STATE_STRUCT T atStateStruct[HIL_EXT STS MAX_ STRUCTURES];

} NETX_EXTENDED_STATE_FIELD_T;

Number of Status Structures

bNumOfStateStruct holds the number of Status Structures that following this field. Up to
HIL_EXT _STS MAX_STRUCTURES structures can be defined. This field is set to zero if no such
structure is defined.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 113/153

Extended State Structure

Each element of the Extended State Structure array (atStateStruct[]) describes exactly one
memory region.

Structure Reference - Extended Status Block / Extended State Structure
Extended Status Structure: NETX_EXTENDED_STATE_STRUCT_T

Offset Type Name Description

0x0100 ui nt8_t bStateArea State Area
Defines the memory location where the state information
can be found

0x0101 uint8_t |bStateTypelD State Type Identification

Type of the state information
0x0102 ui nt16_t usNumOfStateEntries Number of State Entries
0x0104 uint32_t |ulStateOffset State Offset

Start of the information in the given state area

... OXO1FF Unused Space is Set to Zero
Table 91: COMM Channel: Extended State Structure

typedef struct NETX_EXTENDED_ STATE_STRUCT_ Ttag

uint8_t bStateArea; /* Location of the ext. state information */

uint8_t bStateTypelD; /* Type of the state information */

uintle_t usNumOfStateEntries; /* Number of state entries of the type bStateTypelD */
uint32_t ulStateOffset; /* Byte start offset in the defined 1/0 area*/

} NETX_EXTENDED_STATE_STRUCT T;

State Area

bStateArea defines the memory location where this state information can be found.

Value Definition State field located

0 HIL_EXT_STS_STD_INPUT_BLK_ID In standard input data area

1 HIL_EXT_STS_HI_INPUT_BLK_ID In high priority input data area (not supported yet)
8 HIL_EXT_STS_STD_OUTPUT_BLK_ID In standard output area

9 HIL_EXT_STS_HI_OUTPUT_BLK_ID In high priority output data area (not supported yet)
Other values are reserved

Table 92: COMM Channel: Extended State Area

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 114/153

State Type ID

The State Type ID (bStateTypelD) indicates the type of the status information. It implicitly
defines the content and the size of the information. This could be a list of one or more bits or even
bytes per 10 data unit, corresponding to the state definition of the specific protocol.

The following types of state information are defined. The complete list of supported types can be
found in the protocol API manual of the used protocol.

Value Definition Description

1 HIL_EXT_STS_SLAVE_CONFIGURED Configured slave bit field
2 HIL_EXT_STS_SLAVE_ACTIV Active slave bit field

3 HIL_EXT_STS_SLAVE_DIAGNOSTIC Slave diagnostic bit field
Other values are reserved

Table 93: COMM Channel: Extended State Type ID

Note: Not all of the status types are supported by every protocol stack.

Number of State Entries

usNumOfStateEntries holds the number of bytes provided in the status information field. This
value is zero, if no state entries are provided and the field can hold up to 65535 entries.

State Offset

ulStateOffset holds the start offset of the status information in the defined memory area
(input/output image). The offset is related to the beginning of the defined data area and given in
bytes.

Note: The state information is always aligned to 32 bit offsets (round up to the next double
word).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

115/153

Example

This is an example of the state structures in the extended status block and state field definitions for
communication channel O.

0x0000

0x0008
0x0010

0x0050

0x0200

0x0840

0x0E80

OxOECO

0x0F00

)x1000

X2680

Figure 17: COMM Channel: Example Extended Status Structures

Communication Extended Extended State
Channel 0 Status Block Field
reserved A L4 I
Control Block / Reserved
c Stat / to maintain (;Xgizg bNumStateStructs (0..32) =5 _
ommon Status / compatibility to X bStateArea =8
Block existing definitions DSIEIETYREID =1
9 usNumOfStateEntries ~ 108
OX0OFC (0.65535)
ulStateOffset =n
Extended Status 0x0108 bStateArea =8
Block bStateTypelD i =2
Extended usNumOfStateEntries ~128
State Field (0..65535) B
ulStateOffset =n
NETX_EXTENDED_STATE_FIELD_T
N\ 0x0110 bStateArea =g
N bStateTypelD =3
. usNumOfStateEntries _
Send Mailbox (0..65535) =128
\ ulStateOffset =n
0x0118 bStateArea :E -
bStateTypelD =1
i i usNumOfStateEntries _
Receive Mailbox (0..65535) =128
ulStateOffset =n
Output Data Area 1 0x0120 bl;tse:tas'C;TD - 2
(high priority) usNumOfStateEntries _
1/O Image (0..65535) =128
Input Data Area 1 0x1000 | data 0 ulStateOffset =n
(high priority) / data 1
/
reserved / data n
dl
|
Status field 0x01F8 bStateArea
bStateTypelD
CET) usNumOfStateEntries
Status field - (0..65535)
Output Data Area 0 P \
Status field < ¥ ulStateOffset
0x2680 data O
7
g data 1
datan
e P)
Status field -
<
Input Data Area 0 Status field
— »
»

The first entry in the Extended State Field structure indicates that there is a status field located in
the output data image (bStateArea = 8) and ulStateOffset points to a location within the
output image. bStateTypelD holds the type of information located in the output data image (list
of configured/activated/faulted slaves). The second entry, points to the location in the output data
image, and so on.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 116/153

545 Channel Mailbox

The channel mailbox follows the definition for a mailbox system described in section 4.1. Send and
receive mailbox areas are used to exchange non-cyclic, packet based data with the communication
channel (netX firmware / fieldbus protocols).

The send mailbox is used to transfer data to the netX firmware or to the protocol stack. The
receive mailbox is used to receive packet based data from the netX firmware or from the

protocol stack.

A send/receive mailbox is always available in the communication channel and the default user data
size inside the send and receive mailbox is 1596 byte.

The handling of the mailbox system is described in section Non-Cyclic Data Transfer via Mailbox
and Packets on page 35.

Channel Send Mailbox: NETX_SEND_MAILBOX_ BLOCK

Direction: Host System = netX

Offset Type Name Description
0x0200 uintl6_t usPackagesAccepted Packages Acceptable
Number of packets that can be accepted by the firmware
0x0202 uintl6_t usReserved Reserved, setto 0
0x0204 uintg8_t abSendMbx[1596] Send Mailbox Buffer
... OX023F Buffer to insert the send packet

Table 94: COMM Channel: Channel Mailbox - Send Mailbox

Channel Receive Mailbox: NETX _RECV_MAILBOX_BLOCK

Offset Type Name Description
0x0840 uintl6_t usWaitingPackages Waiting Packages
Counter of packets waiting to be read by the host
0x0842 uint16_t usReserved Reserved, setto 0
0x0844 uintg_t abRecvMbx[1596] Receive Mailbox Buffer
... OXOE7F Buffer containing a packet received from the firmware

Table 95: COMM Channel: Channel Mailbox - Receive Mailbox

Channel Mailboxes Structure Reference

typedef struct NETX_SEND_MAILBOX_ BLOCKtag
{

uintlé_t usPackagesAccepted;

uintle_t usReserved;

uint8_t abSendMbx[1596] ;
} NETX_SEND_MAILBOX_BLOCK;

typedef struct NETX_RECV_MAILBOX_ BLOCKtag

uintlé_t usWaitingPackages;
uintle_t usReserved;
uint8_t abRecvMbx[1596] ;

} NETX_RECV_MAILBOX_BLOCK;

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

DPM Definitions / Mapping and Content

117/153

5.4.6

These areas are currently not supported.

High Priority Input/Output Data Image

The high priority input and output areas are intended to divide standard cyclic I/O data from I/O
data which should be transferred with a higher priority.

Both blocks are reserved and always present in the default memory map.

High Priority Input / Output Data Image

Offset Type Name Description

0x0E80 uint8_t abPd10utput[64] High Priority Output Data Image
(not supported yet)

0x0ECO uint8_t abPdlInput[64] High Priority Input Data Image

(not supported yet)

Table 96: COMM Channel: High Priority Input / Output Data Image

5.4.7

Reserved Area

This area is reserved for later use and always available in the default memory map.

Reserved Area

Offset Type Name Description
0x0F00 uints8_t abReserved1[256] Reserved
Setto O

Table 97: COMM Channel: Reserved Area

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

DPM Definitions / Mapping and Content 118/153

5.4.8 Input / Output Process Data Image

The input and output data blocks are used by fieldbus protocols that support cyclic data transfer.
The output data image is used to transfer cyclic data to the network. The input data image is used
to transfer cyclic data from the network.

Note: In case of a network fault (e.g. disconnected network cable), a slave firmware keeps
the last state of the input and output data and clears the Communicating flag in netX
communication flags (see section Communication Channel - Handshake Register on
page 27).

In this case the input data should not be evaluated, while output data can be written.

The handling and synchronization of the input/output data areas is described in section Cyclic Data
Transfer via Input/Output Data Areas on page 49.

Default Memory Map

The size of the input and output data image in the default memory map is 5760 byte each.

Input / Output Process Data Image

Offset Type Name Description
0x1000 uint8_t abPd0OOutput[5760] Output Data Image

Cyclic Data To The Network
0x2680 uint8_t abPdOInput[5760] Input Data Image

Cyclic Data From The Network

Table 98: COMM Channel: Input/Output Process Data Image

8 KByte Memory Layout

The size of the input and output data image for the 8 Kbyte layout is 1536 bytes each.

Input / Output Process Data Image (8 KByte)

Offset Type Name Description
0x1000 uint8_t abPdOOutput[1536] Output Data Image

Cyclic Data To The Network
0x1600 uint8_t abPdOInput[1536] Input Data Image

Cyclic Data From The Network

Table 99: COMM Channel: Input/Output Process Data Image (8 KByte)

5.5 Application Channel

The application channel is reserved for user specific implementations and is not yet supported.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 119/153

6 System Behavior and Services

6.1 Timing Considerations

The netX firmware and the handling of the handshake registers must meet some general timing
requirements to allow a host system a correct detection of state changes and therefore a correct
monitoring of the firmware behavior.

During a reset of the netX chip / firmware, the DPM will be re-initialized and this leads into invalid

data in the DPM for a certain time.

The following list will give an overview of times which have to be considered.

Bootloader and/or netX firmware has initialized the
DPM.

ROM Loader Time
Start-up / Restart Time until DPM content valid <10ms
Second Stage Time until DPM content valid <500 ms
Bootloader
Protocol Stack Time until DPM content valid

- without configuration <l1s

- with fieldbus configuration <10s
Reset: netX chip / Firmware
Start / Re-start Time until DPM content is valid, if a Second Stage min. 100ms

Reset activation

Clearing NSF_READY after HSF_RESET issued

min. 100 - 500ms

Ready after reset

Setting NSF_READY after recovering from a reset

0.5s - max. 6s

Fieldbus Communication

General

COS command / signal handling must be
recognized, therefore changes should be stable for
a minimum of time and before the DPM content
becomes invalid in case of a reset.

typical 20ms

Application Ready

Time until channel signals READY

typical 1000ms

BUS_ON / BUS_OFF

Time until a fieldbus protocol stack signals an
activated/deactivated fieldbus communication (if
available)

typical 5000ms

Channel Initialization

Re-configuration of a protocol stack

typical 10000ms

Packet Send / Receive

Sending / receiving packets via a mailbox system

typical 1000ms

Communication Channel Watchdog
Watchdog Watchdog trigger cycle >=20ms
Note: The given times are valid if the netX dual port memory is interfaced via a data / address

bus. When using an SPI / USB or another serial connection, data transfer times of the
physical connection have to be taken in account which may increase these times.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 120/153

6.2 netX Boot Procedure

The netX supports different start-up scenarios depending on the hardware design. This chapter
describes the procedure for a design with a dual-port memory. In such an environment, the boot
procedure is divided into different steps as outlined below.

Step 1: After Power-On Reset

The netX chip contains a ROM loader. After power-on reset, the ROM loader is started and its
main task is to initialize the internal netX controller and its components (e.g. optional non-volatile
boot devices such as serial Flash, parallel Flash, and DPM etc.). If a boot device is found, the
ROM loader checks for an executable binary code residing in the boot media and starts it.
Otherwise it depends on the hardware settings how the ROM loader proceeds.

Note: The netX chip boot process and the requirements for creating a bootable binary code is
described in the netX Bootstrap Specification.

Step 2: Start of the Second Stage Bootloader

In general the first boot binary of a netX firmware is a Second Stage Bootloader. This loader
should handle all hardware specific initializations of the target hardware, which keeps a netX
protocol stack firmware independent of it. The Second Stage Bootloader creates the so-called
System Device / System Channel in the dual-port memory area before it starts to look for non-
volatile boot devices and a file system containing the resulting netX firmware.

If available, the firmware file will be started. Otherwise, the Second Stage Bootloader, will wait until
a firmware is downloaded by the host application using the System Mailbox.

Step 3: Start of the netX Firmware

If the found netX firmware is started by the Second Stage Bootloader, the firmware takes the
hardware specific information from the Second Stage Bootloader and creates the final layout of the
DPM (System Channel / Handshake Channel / Communication Channels).

If the target hardware does not support non-volatile boot devices, step 2 and step 3 must be
always processed after each power-on reset.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 121/153

6.3 Hardware LEDs

A standard netX based hardware offers several LEDs which can be used to identify the actual state
of the firmware.

The SYS LED is always present (only one per netX device) and described below. But there are up
to 4 LEDs per communication and application channel. These LEDs, like the communication
channel LED (COM LED) are network specific and are described in a separate document.

6.3.1 System LED

The system status LED (SYS LED) is always available. It indicates the state of the system and its
protocol stacks. The following blink patterns are defined:

Color State Meaning
Yellow Flashing Cyclically at 1 Hz netX is in Boot Loader Mode and is Waiting for Firmware
Download
Solid netX is in Boot Loader Mode, but an Error Occurred
Green Solid netX Operating System is Running and a Firmware is Started
Yellow / Green | Flashing Alternating Second Stage Bootloader its active
Off N/A netX has no Power Supply or Hardware Defect Detected

Table 100: SYS LED

6.3.2 Communication Channel LEDs

The meaning of the communication channel LEDs (COM LED) depends on the used firmware and
is described in a separate manual.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 122/153

6.4 Reset Handling

A reset can be executed either for the whole netX chip (Hardware Reset executed by the netX
chip) or the netX firmware (System Reset / Boot Start / Update Start).

A Hardware Reset re-starts the netX chip and the complete boot procedure starts with the ROM
loader execution. This includes an internal memory check and other functions to insure the integrity
of the netX chip itself.

System Reset, Boot Start and Update Start are handled by the netX firmware while the host
application uses commands and flags defined in the netX DPM to activate a reset.

Note: During a hardware reset and during the time the netX firmware starts, the content of
the dual-port memory can be invalid (OxFFFF / 0XOBAD).
As soon as the cookie at the beginning of the DPM can be read, the boot process is
finished (see section System Information Block (page 69) / abCookie[]).

Type of netX firmware

netX 52/51/50/100/500

A Second Stage Bootloader and a standard communication protocol firmware (.NXF) is
used.

netxX 90/4000/4100

A Maintenance firmware (.MXF) and a standard communication protocol firmware (.NXI) is
used.

The startup handling varies slightly between the netX chips

netX 50/51/52/100/500

First, the integrated ROM loader starts. Then the integrated ROM loader starts the Second
Stage Bootloader. Finally, the Second Stage Bootloader starts the (protocol) firmware. If no
firmware is available or the current firmware is damaged, the boot process will stop in the
Second Stage Bootloader.

netX 90/4000/4100

First, the integrated ROM loader starts. If a firmware is available, the integrated ROM loader
starts the (protocol) firmware directly. If no firmware is available or the current firmware is
damaged, the integrated ROM loader will start the Maintenance Firmware (MFW).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 123/153

6.4.1 Hardware Reset

A hardware (chip) reset can only be processed via the netX Register Block and depends on the
netX chip type.

netX 50/100/500
Register block is located at the end of the DPM and the accessible DPM address range must
be 64 Kbyte.

netX 51/52/90/4000/4100

Register block is either located at the beginning or the end of the DPM. Without a firmware
(ROM loader only) the register block is mapped to the beginning of the DPM and the Second
Stage Boot Loader / netX firmware will map the block to the end of the DPM.

The accessible DPM address range must be 64 Kbyte if mapped to the end of the DPM.

To execute a netX chip reset, a reset pattern must be written to the netX reset register.

Reset pattern:
0x00000000, 0x00000001,0x00000003, 0x00000007, O0xO000000F, 0xOOO0O001F,0x0000003F,
0x0000007F, 0x000000FF

The reset is activated when the last value of the pattern is written.

Note: For a complete description on how to reset a specific netX chip, please consult the
corresponding netX Programming Reference Guide.

6.4.2 System Reset

A System Reset is executed by a loaded netX firmware / Second Stage Bootloader / Maintenance
Firmware, forces the running firmware to close all resources and to do a re-start of the firmware.

The internal handling depends on the netX target layout. If the target offers a FLASH memory, a
System Reset will activate the netX ROM loader which loads the netX firmware.

Without a Flash (i.e. on a RAM-based device) the firmware just jumps to the program entry point
and starts over.

System Reset Procedure

Writing HIL_SYS_RESET_COOKIE (0x55AA55AA) to the ul SystemCommandCOS
(see System Control Block in section System Control Block on page 87)

Setting the HSF_RESET flag in bHostFlags (see System Handshake Register in section
System Channel - Handshake Register and Flags on page 23)

The netX firmware clears the NSF_READY flag in bNetxFlags (see System Handshake
Register in section System Channel - Handshake Register and Flags on page 23), indicating
that the system wide reset is in progress.

The NSF_READY flag is set after a successful reset. If a startup error is detected, the
NSF_ERROR flag is set (see bNetxFlags) and an error code is written to ulSystemError
(see System Status Block in section System Status Block on page 89) indicating the
problem.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 124/153

6.4.3 Boot Start
Boot Start is an additional option to the System Reset, forcing the Second Stage Bootloader /
Maintenance firmware not to start an available firmware (e.g. for system maintenance).

It is activated by additionally setting the HSF_BOOTSTART flag in the bHostFlags before
executing the System Reset.

Note: Boot Start only works if Second Stage Bootloader and/or firmware is stored in a Flash.
On a netX target without a Flash (RAM-based systems), a firmware starts over without
activating the Maintenance mode.

6.4.4 Update Start

Update Start is a special option for netX 90/4000/4100-based devices because these systems are
Flash-based and an update is only possible by starting an (integrated) Maintenance Firmware
(MFW).

The MFW checks the available file(s) and in case of a changed firmware or a different boot option,
the MFW will install the firmware (selected by the boot option) and restarts the netX system.

The Update start is activated by writing an additional boot option into the ulSystemControl register
(see section System Control Block on page 87) before processing a System Reset (see section
System Reset on page 123).

Note: Update Start only works on Flash-based systems i.e. the firmware is stored in a Flash.
On a netX target without a Flash (i.e. RAM-based systems), the firmware starts over
without activating the Maintenance firmware.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 125/153

6.5 Communication Channel Services

6.5.1 Channel Initialization

The Channel Initialization is processed by the netX firmware and forces a protocol stack, running
behind a Communication Channel, to re-evaluate the actual fieldbus configuration and to restart
network communication.

A Channel Initiaization does not influence other Communication Channels and is used if a new
configuration database is downloaded to the device or if a new packet based configuration (see
packet services) should be activated.

Note: If the configuration database is locked, re-initializing the communication channel is not
allowed (see HIL_COMM_COS_CONFIG_LOCKED state page 101. and
HIL APP _COS LOCK CONFIGURATION command page 99).

Channel Initialization Procedure

The initialization is handled in two steps

Set the initialization command in the ul Appl 1cationCOS register by setting the
HIL_APP_COS_INIT and HIL_APP_COS_INITIALIZATION_ENABLE flag at the same time
(see Common Control Block section Common Control Block on page 99).

Signal the new COS command by using the HCF_HOST_COS_CMD flag in usHostFlags
(see section Application COS Handling on page 62).

In order to avoid race conditions in firmware (e.g. mailbox events generated by firmware are not
recognized by application) it is best practice to use the following sequence to perform a
Channelinit.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services

126/153

Channellnit - best practise

Configuration Locked?

Unlock configuration

Set BusState Off

Application Registered?

yes

T

[Unregister application {generic + stack specific))‘

v

Qndicaﬂons pending in Recy mailbox?

@res

[handle all outstanding messages)

[ensure that all pending requests from application have been confirmed bvﬂrmware)

Perform Channellnit

Figure 18: Best practise pattern for Channellnit

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

System Behavior and Services 127/153

Communication Channel Flags

During the channel initialization the HIL_COMM_COS_READY and the
HIL_COMM_COS_RUN flag, located in the ulCommunicationCOS register, are cleared.

The HIL_COMM_COS_READY flag stays cleared for at least 20 ms before it is set again.
This indicats that the initialization has been finished.

The HIL_COMM_COS_RUN flag is set, if a valid configuration was found. Otherwise it stays
cleared and an initialization error may be inserted into the ulCommunicationError
indicated by the NCF_ERROR flag in usNetXFlags.

After the initialization process has finished, the protocol stack checks the ulApplicationCOS
register for further setting/commands from the application and depending on the "new"
configuration settings, the network communication will be restored automatically or waits until the
application starts the network communication again.

In this state the aplication has to proceed with normal handshake flag operation which means
checking handshake registers and setting additional application COS command like:

BUS On (see HIL_APP_COS_BUS_ON/HIL_APP_COS_BUS_ON_ENABLE)
Lock configuration (see HIL_APP_COS_LOCK_CONFIG / HIL_APP_COS_LOCK_CONFIG_ENABLE)

Start DMA transfer (see HIL_APP_COS_DMA / HIL_APP_COS_DMA_ENABLE)

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 128/153

6.5.2 Start / Stop Communication

A communication channel (protocol stack) has the option to start network communication after
power up automatically or manually by an application. This behaviour can be defined in the
fieldbus configuration.

Possible Start-up Configuration Settings (e.g. SYCON.net):

Start of Bus Communication Description

Automatically by device The fieldbus communication is started as soon as the configuration is loaded and
evaluated by the protocol stack.

Controlled by application The protocol stack loads and evaluates the configuration bus waits until the
alpplication start it.

If the protocol stack is configured in Automatically by Device mode it will open the network
connections automatically as soon as the configuration is loaded. In the Controlled by Application
mode, the protocol stack loads the configuration and than waits until the application sends a Bus
On command.

Note: Which start-up mode is used is up to the application developer. In general Controlled
Start method gives a better control over the network communication.

The actual state of the bus communication is indicated by the protocol stack in the
HIL_COMM_COS_BUS_ON flag, located in the ulCommounicationCOS field.

Communication State Flag Value State
HIL_COMM_COS_BUS_ON 0 Bus communication is disabled
1 Bus communication is enabled

The host application can use the HIL_APP_COS_BUS_ON flag in the Application Change of State
field ulApplicationCOS to start and stop the bus communication. This also implies the
executing of the COS handling defined for application commands (see Application COS Handling
on page 62).

Application State Flag Value State
HIL_APP_COS_BUS_ON 0 Disable bus communication
1 Enable bus communication

In addtion to the HIL_COMM_COS BUS ON flag, which indicates the actual bus setting, the
protocol stack uses the NCF_COMMUNICATION flag in the usNetXFlags register to indicate if it

has an active bus communication to other devices on the network.

If the bus communication is disabled, the NCF_COMMUNICATION flag will be cleared an all
further attempts to re-open a connection are rejected until bus communication is started again.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 129/153

6.5.3 Lock / Unlock Configuration

The Lock / Unlock Configuration mechanism is used to prevent the configuration settings of a
communication channel from being deleted or changed during run-time.

Locking and unlocking of the configuration can be achieved by an application by using the Lock
Configuration flag HIL_APP_COS LOCK_CONFIGURATION in ulApplicationCOS and
executing the COS handling defined for application commands (see Application COS Handling on
page 62).

Application State Flag Value State
HIL_APP_COS_LOCK_CONFIGURATION |0 Unlock configuration
1 Lock configuration

The communication channel indicates the actual state by the Configuration Locked flag
HIL_COMM_COS_CONFIG_LOCKED in ulCommunicationCOS.

Communication State Flag Value State
HIL_COMM_COS_CONFIG_LOCKED 0 Configuration unlocked
1 Configuration locked

Any configuration tool shall reject those attempts when the Configuration Locked flag
HIL_COMM_COS_CONFIG_LOCKED is setin ulCommunicationCOS.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 130/153

6.5.4 Channel Watchdog

Each Communication Channel offers a dedicated watchdog handling, allowing the netX firmware to
monitor the correct processing of the host application and vice versa.

Two fields are used for the watchdog handling:

ulDeviceWatchdog (see Common Control Block section Common Control Block on page
99)

ulHostWatchdog (see Common Status Block section Common Status Block on page 101)

The handling itself simply consist of copy function which must be cyclically exceuted by the host
application, where the application has to copy the content from the ulHostWatchdog field to the
ulDeviceWatchdog field.

The first copy automatically activates the watchdog supervising by the firmware and from this point
the application has to repeate the copy function once during the configured watchdog time. If the
application does not process the copy and the watchdog time expires, a watchdog hit will be
signaled to the Communication Channel.

Note: The actual configured watchdog time can be read from usWatchdogT ime field located
in the Common Status Block. If the watchdog time is set to O, the watchdog will not be
activated.

Communication Channel watchdog behavior in case of a watchdog hit:
Close all network connections
Clearing the NCF_COMMUNICATING flag
Set HIL_E WATCHDOG_TIMEQOUT error into the ulCommunicationError field
Set NCF_ERROR flag in the usNetXFlags register

Note: After a watchdog hit, the Communication Channel must be newly initialized (reset)
before it will start again.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

System Behavior and Services 131/153

Watchdog States and Processing

Watchdog State ulHostWatchdog ulDeviceWatchdog | Description
Start-up Value 0x00000001 0x00000000 Default initialization after power-up or reset
- Watchdog supervision not active
Activation / The application has to copy the content of ulHostWatchdog to ulDeviceWatchdog field.
Processing The first copy automatically starts the watchdog supervising (ulDeviceWatchdog != 0)
0x00000001 0x00000001 Watchdog supervision activated
Checking Every system cycle (2ms), the firmware checks:

1. ulDeviceWatchdog != 0 (watchdog is activated
2. ulHostWatchdog == ulDeviceWatchdog (watchdog is handled by the application
In this case:

- The watchdog timer is restarted with the configured watchdog value
- The value of ulDeviceWatchdog is copied to ulHostWatchdog

- ulHostWatchdog is incremented by 1 (0 is skipped on overflows)

0x00000002 0x00000001 Watchdog check was successful

Watchdog Hit If the application does not copy ulHostWatchdog to ulDeviceWatchdog and the watchdog
time expires, a watchdog hit is signaled to the communication channel.

ulDeviceWatchdog == ulHostWatchdog Communication Channel will be signaled
and

watchdog timeout has expired

Deactivation The watchdog supervising will be deactivated as soon as the host application writes 0 to
ulDeviceWatchdog.
n 0x00000000 Application has deactivates the watchdog
0x00000001 0x00000000 netX firmware will:

- stop the internal watchdog timer
- re-initialize ulHostWatchdog to 1

Because of the copy functionality and the incrementation by the netX firmware, ulHostWatchdog
can also be used by the application to supervise the netX firmware processing.

Note: The minimum cycle time of the firmware for checking the watchdog values is 2ms and
the minimal configureable watchdog time is 20ms.

6.6 Packet Services

Most of the DPM data and functions can be executed by sending so-called command packets to
the netX firmware (either via the system mailbox or a channel mailbox).

These packets are defined in an own manual (see netX DPM Packet Services).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Error codes

132/153

7 Error codes

A netX firmware contains several components which are able to signal errors. Therefore error

numbers and places where the errors are signaled depend on the component.

The following table should help to identify the component signaling an error.

Component Format / Value Range Location Description
all 0x0000000 all No error

- SUCCESS_HIL_OK

- HIL_SYS_SUCCESS
Second Stage 0x00000001 ... System Status Block See section System
Bootloader 0x000000C Variable: ulBootError Status Block (page 89).
netX System (System) 0x00000001 ... System Status Block See section System
(operating system) 0x00007FFF Variable: ulSystemError Status Block (page 89).

netX System (General)
(General errors)

0xC0000001 ... OxCO00xxxx
0xC02B0001 ... 0xC02Byyyy

System Status Block
Variable: ulSystemError

or
Packet error in ulSta

See section System
Status Block (page 89).

See section Packet
structure (page 37).

netX System
- Protocol stack error

OxCOxxyyyy
XX = Protocol stack identifier
yyyy = Error number

System Status Block
Variable: ulSystemError

or
Packet error in ulSta

See section System
Status Block (page 89).

See section Packet
structure (page 37).

By default, an error code of 0 = SUCCESS_HIL_OK / HIL_SYS SUCCESS indicates no failure or
error. In case a system error occurs, ul SystemError will be set.

Additionally the NSF_ERROR flag in the netX System Flags is set (see sections System Channel -
Handshake Register and Flags (page 23) and System Status Block (page 89) for details).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

133/153

7.1 Second Stage Bootloader Errors

Value Description
0x00000000 No Error
0x00000001 There was no bootable file found inside the flash disk or parallel flash
0x00000002 No flash disk could be determined by boot loader
Possible cause:
Defect of the serial flash
0x00000003 Timing parameters for target could not be determined
Possible causes:
No SDRAM parameters found in security memory / device label
or .NXF file
SRAM / Flash parameters in .NXF file are missing
0x00000004 Boot header in .NXF file is corrupt.
0x00000005 Application checksum in .NXF file is invalid
Possible causes:
Invalid RAM Parameters
Defective .NXF file
Flash error
0x00000006 Error opening file on flash disk
Possible cause:
Defective flash volume
0x00000007 Error reading file from flash disk
Possible cause:
Defective flash volume
0x00000008 Command mode of boot loader was forced by user
Possible causes:
Rdy/Run Pins of netX are configured to Extension bus boot mode
HSF_Bootstart bit was set in DPM
0x00000009 Firmware does not match device (firmware validation failed)
0x0000000A File does not fit in SQIROM (XiP) area, while trying to update firmware
0x0000000B Error copying firmware from to SQIROM (XiP) area
0x0000000C Error during license check (netX 100/500 only)

e. g. i2c transaction error

Table 101: Second Stage Bootloader Errors

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

134/153

7.2 netX System Errors (System)

System errors can be found in the Hil_DualPortMemory.h header file.

Value Definition / Description
0x00000000 HIL_SYS_SUCCESS
Success
0x00000001 HIL_SYS_RAM_NOT_FOUND
RAM Not Found
0x00000002 HIL_SYS_RAM_TYPE
Invalid RAM Type
0x00000003 HIL_SYS_RAM_SIZE
Invalid RAM Size
0x00000004 HIL_SYS_RAM_TEST
Ram Test Failed
0x00000005 HIL_SYS_FLASH_NOT_FOUND
Flash Not Found
0x00000006 HIL_SYS_FLASH_TYPE
Invalid Flash Type
0x00000007 HIL_SYS_FLASH_SIZE
Invalid Flash Size
0x00000008 HIL_SYS_FLASH_TEST
Flash Test Failed
0x00000009 HIL_SYS_EEPROM_NOT_FOUND
EEPROM Not Found
0x0000000A HIL_SYS_EEPROM_TYPE
Invalid EEPROM Type
0x0000000B HIL_SYS_EEPROM_SIZE
Invalid EEPROM Size
0x0000000C HIL_SYS_EEPROM_TEST
EEPROM Test Failed
0x0000000D HIL_SYS_SECURE_EEPROM
Security EEPROM Failure
0x0000000E HIL_SYS_SECURE_EEPROM_NOT_INIT
Security EEPROM Not Initialized
0x0000000F HIL_SYS_FILE_SYSTEM_FAULT
File System Fault
0x00000010 HIL_SYS_VERSION_CONFLICT
Version Conflict
0x00000011 HIL_SYS_NOT_INITIALIZED
System Task Not Initialized
0x00000012 HIL_SYS_MEM_ALLOC
Memory Allocation Failed
Other values are reserved

Table 102: System Error Codes (System)

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

135/153

7.3 netX System Errors (General)

General system errors can be found in the Hil_Results.h header files.

Value Definition / Description
0x00000000 SUCCESS_HIL_OK

No error
0xC0000001 ERR_HIL_FAIL

Common error, detailed error information optionally present in the data area of packet.
0xC0000002 ERR_HIL_UNEXPECTED

Unexpected failure.
0xC0000003 ERR_HIL_OUTOFMEMORY

Ran out of memory.
0xC0000004 ERR_HIL_UNKNOWN_COMMAND

Unknown Command in Packet received.
0xC0000005 ERR_HIL_UNKNOWN_DESTINATION

Unknown Destination in Packet received.
0xC0000006 ERR_HIL_UNKNOWN_DESTINATION_ID

Unknown Destination Id in Packet received.
0xC0000007 ERR_HIL_INVALID_PACKET_LEN

Packet length is invalid.
0xC0000008 ERR_HIL_INVALID_EXTENSION

Invalid Extension in Packet received.
0xC0000009 ERR_HIL_INVALID_PARAMETER

Invalid Parameter in Packet found.
0xCO00000A ERR_HIL_INVALID_ALIGNMENT

Invalid alignment.
0xC000000C ERR_HIL_WATCHDOG_TIMEOUT

Watchdog error occurred.
0xC000000D ERR_HIL_INVALID_LIST_TYPE

List type is invalid.
0xC000000E ERR_HIL_UNKNOWN_HANDLE

Handle is unknown.
0xC000000F ERR_HIL_PACKET_OUT_OF_SEQ

A packet index has been not in the expected sequence.
0xC0000010 ERR_HIL_PACKET_OUT_OF_MEMORY

The amount of fragmented data contained the packet sequence has been too large.
0xC0000011 ERR_HIL_QUE_PACKETDONE

The packet done function has failed.
0xC0000012 ERR_HIL_QUE_SENDPACKET

The sending of a packet has failed.
0xC0000013 ERR_HIL_POOL_PACKET_GET

The request of a packet from packet pool has failed.
0xC0000014 ERR_HIL_POOL_PACKET_RELEASE

The release of a packet-to-packet pool has failed.
0xC0000015 ERR_HIL_POOL_GET_LOAD

The get packet pool load function has failed.
0xC0000016 ERR_HIL_QUE_GET_LOAD

The get queue load function has failed.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

136/153

Value Definition / Description
0xC0000017 ERR_HIL_QUE_WAITFORPACKET
The waiting for a packet from queue has failed.
0xC0000018 ERR_HIL_QUE_POSTPACKET
The posting of a packet has failed.
0xC0000019 ERR_HIL_QUE_PEEKPACKET
Peeking a packet from queue has failed.
0xC000001A ERR_HIL_REQUEST_RUNNING
Request is already running.
0xC000001B ERR_HIL_CREATE_TIMER
Creating a timer failed.
0xC000001C ERR_HIL_BUFFER_TOO_SHORT
Supplied buffer too short for the data.
0xC000001D ERR_HIL_NAME_ALREADY_EXIST
Supplied name already exists.
0xCO000001E ERR_HIL_PACKET_FRAGMENTATION_TIMEOUT
The packet fragmentation has timed out.
0xC0000100 ERR_HIL_INIT_FAULT
General initialization fault.
0xC0000101 ERR_HIL_DATABASE_ACCESS_FAILED
Database access failure.
0xC0000102 ERR_HIL_CIR_MASTER_PARAMETER_FAILED
Master parameter cannot activated at state operate.
0xC0000103 ERR_HIL_CIR_SLAVE_PARAMTER_FAILED
Slave parameter cannot activated at state operate.
0xC0000119 ERR_HIL_NOT_CONFIGURED
Configuration not available
0xC0000120 ERR_HIL_CONFIGURATION_FAULT
General configuration fault.
0xC0000121 ERR_HIL_INCONSISTENT_DATA_SET
Inconsistent configuration data.
0xC0000122 ERR_HIL_DATA_SET_MISMATCH
Configuration data set mismatch.
0xC0000123 ERR_HIL_INSUFFICIENT_LICENSE
Insufficient license.
0xC0000124 ERR_HIL_PARAMETER_ERROR
Parameter error.
0xC0000125 ERR_HIL_INVALID_NETWORK_ADDRESS
Network address invalid.
0xC0000126 ERR_HIL_NO_SECURITY_MEMORY
Security memory chip missing or broken.
0xC0000127 ERR_HIL_NO_MAC_ADDRESS_AVAILABLE
No MAC address available.
0xC0000140 ERR_HIL_NETWORK_FAULT
General communication fault.
0xC0000141 ERR_HIL_CONNECTION_CLOSED
Connection closed.
0xC0000142 ERR_HIL_CONNECTION_TIMEOUT
Connection timeout.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 137/153
Value Definition / Description
0xC0000143 ERR_HIL_LONELY_NETWORK
Lonely network.
0xC0000144 ERR_HIL_DUPLICATE_NODE
Duplicate network address.
0xC0000145 ERR_HIL_CABLE_DISCONNECT
Cable disconnected.
0xC0000180 ERR_HIL_BUS_OFF
Bus Off flag is set.
0xC0000181 ERR_HIL_CONFIG_LOCK
Changing configuration is not allowed.
0xC0000182 ERR_HIL_APPLICATION_NOT_READY
Application is not at ready state.
0xC0000183 ERR_HIL_RESET_IN_PROCESS
Application is performing a reset.
0xC0000200 ERR_HIL_WATCHDOG_TIME_INVALID
Watchdog time is out of range.
0xC0000201 ERR_HIL_APPLICATION_ALREADY_REGISTERED
Application is already registered.
0xC0000202 ERR_HIL_NO_APPLICATION_REGISTERED
No application registered.
0xC0000203 ERR_HIL_INVALID_COMPONENT_ID
Invalid component identifier.
0xC0000204 ERR_HIL_INVALID_DATA_LENGTH
Invalid data length.
0xC0000205 ERR_HIL_DATA_ALREADY_SET
The data was already set.
0xC0000206 ERR_HIL_NO_LOGBOOK_AVAILABLE
Logbook not available.
0xC0001000 ERR_HIL_INVALID_HANDLE
No description available - ERR_HIL_INVALID_HANDLE.
0xC0001001 ERR_HIL_UNKNOWN_DEVICE
No description available - ERR_HIL_UNKNOWN_DEVICE.
0xC0001002 ERR_HIL_RESOURCE_IN_USE
No description available - ERR_HIL_RESOURCE_IN_USE.
0xC0001003 ERR_HIL_NO_MORE_RESOURCES
No description available - ERR_HIL_NO_MORE_RESOURCES.
0xC0001004 ERR_HIL_DRV_OPEN_FAILED
No description available - ERR_HIL_DRV_OPEN_FAILED.
0xC0001005 ERR_HIL_DRV_INITIALIZATION_FAILED
No description available - ERR_HIL_DRV_INITIALIZATION_FAILED.
0xC0001006 ERR_HIL_DRV_NOT_INITIALIZED
No description available - ERR_HIL_DRV_NOT_INITIALIZED.
0xC0001007 ERR_HIL_DRV_ALREADY_INITIALIZED
No description available - ERR_HIL_DRV_ALREADY_INITIALIZED.
0xC0001008 ERR_HIL_CRC
No description available - ERR_HIL_CRC.
0xC0001010 ERR_HIL_DRV_INVALID_RESOURCE
No description available - ERR_HIL_DRV_INVALID_RESOURCE.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 138/153

Value Definition / Description
0xC0001011 ERR_HIL_DRV_INVALID_MEM_RESOURCE

No description available - ERR_HIL_DRV_INVALID_MEM_RESOURCE.
0xC0001012 ERR_HIL_DRV_INVALID_MEM_SIZE

No description available - ERR_HIL_DRV_INVALID_MEM_SIZE.
0xC0001013 ERR_HIL_DRV_INVALID_PHYS_MEM_BASE

No description available - ERR_HIL_DRV_INVALID_PHYS_MEM_BASE.
0xC0001014 ERR_HIL_DRV_INVALID_PHYS_MEM_SIZE

No description available - ERR_HIL_DRV_INVALID_PHYS_MEM_SIZE.
0xC0001015 ERR_HIL_DRV_UNDEFINED_HANDLER

No description available - ERR_HIL_DRV_UNDEFINED_HANDLER.
0xC0001020 ERR_HIL_DRV_ILLEGAL_VECTOR_ID

No description available - ERR_HIL_DRV_ILLEGAL_VECTOR_ID.
0xC0001021 ERR_HIL_DRV_ILLEGAL_IRQ_MASK

No description available - ERR_HIL_DRV_ILLEGAL_IRQ_MASK.
0xC0001022 ERR_HIL_DRV_ILLEGAL_SUBIRQ_MASK

No description available - ERR_HIL_DRV_ILLEGAL_SUBIRQ_MASK.
0xC0001100 ERR_HIL_DPM_CHANNEL_UNKNOWN

No description available - ERR_HIL_DPM_CHANNEL_UNKNOWN.
0xC0001101 ERR_HIL_DPM_CHANNEL_INVALID

No description available - ERR_HIL_DPM_CHANNEL_INVALID.
0xC0001102 ERR_HIL_DPM_CHANNEL_NOT_INITIALIZED

No description available - ERR_HIL_DPM_CHANNEL_NOT _INITIALIZED.
0xC0001103 ERR_HIL_DPM_CHANNEL_ALREADY_INITIALIZED

No description available - ERR_HIL_DPM_CHANNEL_ALREADY _INITIALIZED.
0xC0001120 ERR_HIL_DPM_CHANNEL_LAYOUT_UNKNOWN

No description available - ERR_HIL_DPM_CHANNEL_LAYOUT_UNKNOWN.
0xC0001121 ERR_HIL_DPM_CHANNEL_SIZE_INVALID

No description available - ERR_HIL_DPM_CHANNEL_SIZE_INVALID.
0xC0001122 ERR_HIL_DPM_CHANNEL_SIZE_EXCEEDED

No description available - ERR_HIL_DPM_CHANNEL_SIZE_EXCEEDED.
0xC0001123 ERR_HIL_DPM_CHANNEL_TOO_MANY_BLOCKS

No description available - ERR_HIL_DPM_CHANNEL_TOO_MANY_BLOCKS.
0xC0001130 ERR_HIL_DPM_BLOCK_UNKNOWN

No description available - ERR_HIL_DPM_BLOCK_UNKNOWN.
0xC0001131 ERR_HIL_DPM_BLOCK_SIZE_EXCEEDED

No description available - ERR_HIL_DPM_BLOCK_SIZE_EXCEEDED.
0xC0001132 ERR_HIL_DPM_BLOCK_CREATION_FAILED

No description available - ERR_HIL_DPM_BLOCK_CREATION_FAILED.
0xC0001133 ERR_HIL_DPM_BLOCK_OFFSET_INVALID

No description available - ERR_HIL_DPM_BLOCK_OFFSET_INVALID.
0xC0001140 ERR_HIL_DPM_CHANNEL_HOST_MBX_FULL

No description available - ERR_HIL_DPM_CHANNEL_HOST_MBX_FULL.
0xC0001141 ERR_HIL_DPM_CHANNEL_SEGMENT_LIMIT

No description available - ERR_HIL_DPM_CHANNEL_SEGMENT_LIMIT.
0xC0001142 ERR_HIL_DPM_CHANNEL_SEGMENT_UNUSED

No description available - ERR_HIL_DPM_CHANNEL_SEGMENT_UNUSED.
0xC0001143 ERR_HIL_NAME_INVALID

No description available - ERR_HIL_NAME_INVALID.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 139/153

Value Definition / Description
0xC0001144 ERR_HIL_UNEXPECTED_BLOCK_SIZE

No description available - ERR_HIL_UNEXPECTED_BLOCK_SIZE.
0xC0001145 ERR_HIL_COMPONENT_BUSY

The component is busy and cannot handle the requested service.
0xC0001150 ERR_HIL_INVALID_HEADER

Invalid (file) header. E.g. wrong CRC/MD5/Cookie.
0xC0001151 ERR_HIL_INCOMPATIBLE

Firmware does not match device.
0xC0001152 ERR_HIL_NOT_AVAILABLE

Update file or destination (XIP-Area) not found.
0xC0001153 ERR_HIL_READ

Failed to read from file/area.
0xC0001154 ERR_HIL_WRITE

Failed to write from file/area.
0xC0001155 ERR_HIL_IDENTICAL

Update firmware and installed firmware are identical.
0xC0001156 ERR_HIL_INSTALLATION

Error during installation of firmware.
0xC0001157 ERR_HIL_VERIFICATION

Error during verification of firmware.
0xC0001158 ERR_HIL_INVALIDATION

Error during invalidation of firmware files.
0xC0001160 ERR_HIL_FORMAT

Volume is not formatted.
0xC0001161 ERR_HIL_VOLUME

(De-)Initialization of volume failed.
0xC0001162 ERR_HIL_VOLUME_DRV

(De-)Initialization of volume driver failed.
0xC0001163 ERR_HIL_VOLUME_INVALID

The volume is invalid.
0xC0001164 ERR_HIL_VOLUME_EXCEEDED

Number of supported volumes exceeded.
0xC0001165 ERR_HIL_VOLUME_MOUNT

The volume is mounted (in use).
0xC0001166 ERR_HIL_ERASE

Failed to erase file/directory/flash.
0xC0001167 ERR_HIL_OPEN

Failed to open file/directory.
0xC0001168 ERR_HIL_CLOSE

Failed to close file/directory.
0xC0001169 ERR_HIL_CREATE

Failed to create file/directory.
0xC0001170 ERR_HIL_MODIFY

Failed to modify file/directory.
0x0000F005 SUCCESS_HIL_FRAGMENTED

Fragment accepted.
0xCO000F006 ERR_HIL_RESET_REQUIRED

Reset required.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

140/153

Value

Definition / Description

0xCOO0F007

ERR_HIL_EVALUATION_TIME_EXPIRED
Evaluation time expired. Reset required.

Table 103: Common status codes

Value Definition / Description
0x00000000 SUCCESS_HIL_OK
No error
0xC02B0001 ERR_RCX_QUE_UNKNOWN
Queue unknown.
0xC02B0002 ERR_RCX_QUE_IDX_UNKNOWN
Queue table index does not exist.
0xC02B0003 ERR_RCX_TSK_UNKNOWN
Task unknown.
0xC02B0004 ERR_RCX_TSK_IDX_UNKNOWN
Task table index does not exist.
0xC02B0005 ERR_RCX_TSK_HANDLE_INVALID
Task handle invalid.
0xC02B0006 ERR_RCX_TSK_INFO_IDX_UNKNOWN
Task info field index unknown.
0x402B0001 INFO_RCX_FILE_RETRANSMIT
The last data block was invalid, please retransmit.
0xC02B0007 ERR_RCX_FILE_XFR_TYPE_INVALID
Requested transfer type invalid.
0xC02B0008 ERR_RCX_FILE_REQUEST_INCORRECT
Request is incorrectly formatted i.e. wrong parameters.
0xC02B0009 ERR_RCX_UNKNOWN_PORT_INDEX
Unknown port index.
0xC02B0O00A |ERR_RCX_ROUTER_TABLE_FULL
Router table is full.
0xC02B000B | ERR_RCX_NO_SUCH_ROUTER_IN_TABLE
No such router in table.
0xC02B000C | ERR_RCX_INSTANCE_NOT_NULL
Mid_Sys Instance is not 0.
0xC02B000D | ERR_RCX_COMMAND_INVALID
Invalid command.
0xC02BO00OE | ERR_RCX_TSK_INVALID
Invalid task handle.
0xC02B0O00F ERR_RCX_TSK_NOT_A_USER_TASK
Access denied. Not a user task (See Config-File).
0xC02B0010 ERR_RCX_LOG_QUE_NOT_SETTABLE
Logical queue handle not settable.
0xC02B0011 ERR_RCX_LOG_QUE_NOT_INVALID
Logical queue handle invalid.
0xC02B0012 ERR_RCX_LOG_QUE_NOT_SET
Logical queue handle has not been set.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 141/153
Value Definition / Description
0xC02B0013 ERR_RCX_LOG_QUE_ALREADY_USED
Logical queue handle is already in use.
0xC02B0014 ERR_RCX_TSK_NO_DEFAULT_QUEUE
Task has no default process queue.
0xC02B0015 ERR_RCX_MODULE_INVALID
Firmware Module is invalid. CRC-32 check failed.
0xC02B0016 ERR_RCX_MODULE_NOT_FOUND
Firmware Module has not been found. Maybe it has not been downloaded before.
0xC02B0017 ERR_RCX_MODULE_RELOC_ERROR
Firmware Module has an invalid reloc table.
0xC02B0018 ERR_RCX_MODULE_NO_INIT_TBL
Firmware Module has no init table.
0xC02B0019 ERR_RCX_MODULE_NO_ENTRY_POINT
Firmware Module has no code entry point.
0xC02B001A |ERR_RCX_ACCESS_DENIED_IN_LOCKED_STATE
Access denied due to current operating conditions.
0xC02B001B | ERR_RCX_INVALID_FIRMWARE_SIZE
Firmware does not fit into flash.
0xC02B001C |ERR_RCX_MODULE_RELOCATION_DISTANCE_TOO_LONG
The relocation distance is too long.
0xC02B001D |ERR_RCX_SEC_FAILED
Access to the security flash failed.
0xC02BO01E |ERR_RCX_SEC _DISABLED
Security flash is disabled at firmware.
0xC02B001F ERR_RCX_INVALID_EXTENSION
Invalid Extension field.
0xC02B0020 ERR_RCX_BLOCK_SIZE_OUT_OF_RANGE
Block size out of range.
0xC02B0021 ERR_RCX_INVALID_CHANNEL
Invalid Channel.
0xC02B0022 ERR_RCX_INVLAID_FILE_LENGTH
Invalid File Length.
0xC02B0023 ERR_RCX_INVALID_CHARACTER
Invalid Character.
0xC02B0024 ERR_RCX_PACKET_OUT_OF_SEQUENCE
Packet out of sequence.
0xC02B0025 ERR_RCX_NOT_POSSIBLE_IN_CURRENT_STATE
Not possible in current state.
0xC02B0026 ERR_RCX_SECURITY_EEPROM_INVALID_ZONE
Security Eeprom Zone Parameter is invalid.
0xC02B0027 ERR_RCX_SECURITY_EEPROM_NOT_ALLOWED
Security Eeprom access is not allowed in current state.
0xC02B0028 ERR_RCX_SECURITY_EEPROM_NOT_AVAILABLE
Security Eeprom is not available.
0xC02B0029 ERR_RCX_SECURITY_EEPROM_INVALID_CHECKSUM
Security Eeprom has an invalid checksum.
0xC02B002A | ERR_RCX_SECURITY_EEPROM_ZONE_NOT_WRITABLE
Security Eeprom Zone is not writeable.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 142/153
Value Definition / Description
0xC02B002B | ERR_RCX_SECURITY_EEPROM_READ_FAILED
Security Eeprom Read Failed.
0xC02B002C | ERR_RCX_SECURITY_EEPROM_WRITE_FAILED
Security Eeprom Write Failed.
0xC02B002D |ERR_RCX_SECURITY_EEPROM_ZONE_ACCESS_DENIED
Security Eeprom Zone Access Denied.
0xC02B002E | ERR_RCX_SECURITY_EEPROM_EMULATED
Security Eeprom Emulated. No write possible.
0xC02B002F ERR_RCX_FILE_NAME_INVALID
File name is invalid.
0xC02B0030 ERR_RCX_FILE_SEQUENCE_ERROR
File Sequence Error.
0xC02B0031 ERR_RCX_FILE_SEQUENCE_END_ERROR
File Sequence End Error.
0xC02B0032 ERR_RCX_FILE_SEQUENCE_BEGIN_ERROR
File Sequence Begin Error.
0xC02B0033 ERR_RCX_UNEXPECTED_BLOCK_SIZE
Unexpected File Transfer Block Size.
0xC02B0034 ERR_HIL_FILE_HEADER_CRC_ERROR
Hilscher File Header has invalid CRC error.
0xC02B0035 ERR_HIL_FILE_HEADER_MODULE_SIZE_DIFFERS
Hilscher File Header specifies a different module size than the actual module header itself.
0xC02B0036 ERR_HIL_FILE_HEADER_MD5_CHECKSUM_ERROR
Hilscher File Header contains a wrong MD-5 checksum for file data.
0xC02B0037 ERR_RCX_PACKET_WOULD_BE_TOO_LONG_FOR_MTU
The packet would be too long for transfer.
0xC02B0038 ERR_INVALID_BLOCK
Invalid block id
0xC02B0039 ERR_INVALID_STRUCT_NUMBER
Invalid structure number
0xC02B003A | ERR_HIL_FILE_HEADER_INVALID
Invalid file header
0xC02B003B | ERR_LICENSE_CHIPTYPE_UNSUPPORTED
Target device not supported for license update
0xC02B003C | ERR_LICENSE_CHIPTYPE_MISMATCH
License incompatible for target device
0xC02B003D | ERR_LICENSE_HW_MISMATCH
License generated for different device
0xC02B0O03E | ERR_MODULE_CONTAINS_NO_MODULE_DESCRIPTOR
Missing module descriptor in module.
0xC02B003F ERR_MODULE_CONTAINS_UNKNOWN_VERSION
Unknown version in module descriptor.
0xC02B0040 ERR_MODULE_HAS_NO_INIT_FUNCTION
Module has no init function.
0xC02B0041 ERR_MODULE_OFFSET_RANGE_ERROR
Module part exceeded offset range.
0xC02B0042 ERR_MODULE_INVALID_ELF_HEADER
Invalid ELF header in module.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes 143/153

Value Definition / Description

0xC02B0043 ERR_MODULE_INVALID_ELF_SECTION_REFERENCE
Invalid ELF section reference in module.

0xC02B0044 ERR_MODULE_INVALID_ELF_SYMBOL_REFERENCE
Invalid ELF symbol reference in module.

0xC02B0045 ERR_MODULE_CONTAINS_AN_UNDEFINED_SYMBOL
Module contains an undefined symbol.

0xC02B0046 ERR_MODULE_CONTAINS_INVALID_CODE_SYMBOL
Module contains invalid symbol to code area.

0xC02B0047 ERR_MODULE_CONTAINS_UNSUPPORTED_SYMBOL_BINDING
Module contains a supported symbol binding.

0xC02B0048 ERR_MODULE_CONTAINS_UNSUPPORTED_SYMBOL_TYPE
Module contains a supported symbol type.

0xC02B0049 ERR_MODULE_INVALID_SECTION_OFFSET_ENCOUNTERED
Invalid section offset encountered.

0xC02B004A | ERR_MODULE_UNSUPPORTED_RELOC_TYPE
Unsupported reloc type.

0xC02B004B | ERR_MODULE_RELOC_DISTANCE_TOO_LONG
Reloc distance too long.

0xC02B004C | ERR_MODULE_RELOC_ERROR
Reloc error.

0xC02B004D | ERR_MODULE_SHT_RELA_NOT_SUPPORTED
Rela relocs not supported.

0xC02B0O04E | ERR_MODULE_SPECIAL_SYM_PARSE_ERROR
Special syms could not be parsed.

0xC02B004F | ERR_MODULE_MISSING_SPECIAL_SYMS
Missing special symbols in ELF symtab.

0xC02B0050 ERR_MODULE_RCX_JUMP_TABLE_IS_SHORTER_THAN_EXPECTED
rcX Jump table is shorter than expected.

0xC02B0051 ERR_MODULE_LIBC_JUMP_TABLE_IS SHORTER_THAN_EXPECTED
libc Jump table is shorter than expected.

0xC02B0052 ERR_MODULE_TASK_GROUP_RANGE_DOES _NOT_MATCH_STATIC_TASK_TABLE
Task Group Range does not match static task table.

0xC02B0053 ERR_MODULE_INTERRUPT_GROUP_RANGE_DOES_NOT_MATCH_INTERRUPT_TABLE
Interrupt Group Range does not match interrupt table.

0xC02B0054 ERR_MODULE_INTERRUPT_GROUP_TASK_RANGE_DOES NOT_MATCH_INTERRUPT_TABLE
Interrupt Group Task-Range does not match interrupt table.

0xC02B0055 ERR_MODULE_LED_TAG_TOO_SHORT
LED-Tag is too short.

0xC02B0056 ERR_MODULE_LED_TAG_CONTAINS_INVALID_PARAMETERS
LED-Tag contains invalid parameters.

0xC02B0057 ERR_MODULE_CONTAINS_UNSUPPORTED_COMMON_SYMBOL
Module contains unsupported *COM* symbol.

0xC02B0058 ERR_RCX_DEVICE_CLASS_INVALID
Device class in file header does not match target.

0xC02B0059 ERR_RCX_MFG_INVALID
Manufacturer in file header does not match target.

0xC02B0O05A | ERR_RCX_HW_COMPATIBILITY_INVALID
Hardware compatibility index in file header does not match target.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Error codes

144/153

Value Definition / Description
0xC02B005B | ERR_RCX_HW_OPTIONS_INVALID
Hardware options in file header does not match target.
0xC02B4D52 | ERR_RCX_SECURITY_EEPROM_ZONE_NOT_READABLE
Security Eeprom Zone is not readable.
0xC02B524C | ERR_RCX_FILE_TRANSFER_IN_USE
File Transfer in use.
0xC02B4444 ERR_RCX_FILE_TRANSFER_PACKET_INVALID
File Transfer Packet invalid.
0xC02B5342 ERR_RCX_FILE_TRANSFER_NOT_ACTIVE
File Transfer is not active.
0xC02B5257 ERR_RCX_FILE_TRANSFER_INVALID
File Transfer has invalid type code.
0xC02B4352 ERR_RCX_FILE_CRC_REPEATEDLY_WRONG
File Transfer was tried repeatedly with a wrong CRC.
0xC02B4353 ERR_RCX_FILE_TRANSFER_TYPE_NOT_AVAILABLE
Transfer Type is not available.
0xC02B5555 ERR_RCX_PATH_INVALID
File Path submitted in File Transfer was invalid.
0xCO02BFFFF | ERR_RCX_DRIVER_CFG_TABLE_INIT_FUNCTION_MISSING
Driver Configuration Table Init Function missing.
0xC02B4B54 | ERR_RCX_CONFIGURATION_LOCKED
Configuration has been locked.
0xC02B4242 ERR_RCX_NOT_ENOUGH_SPACE_FOR_FILE
Not enough space on volume for file.
0xC02B4243 ERR_RCX_FORMAT_ERASE_FAILED
Error formatting / erasing volume.
0xC02B4244 ERR_RCX_FORMAT_VERIFY_FAILED
Error erasing sector.

Table 104: System Middleware errors

7.4 Protocol Stack Errors

These errors are protocol stack specific and defined in a file named ..._Results.h that is part of the

header files of a protocol stack (not part of the default DPM definition).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Appendix 145/153

8 Appendix

8.1

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

List of figures

DPM Structure: DPM ConNECioN t0 NEEXccco i, 9
DPM Structure: Overview 0f DPM MEMOIY LAYOULc..uuiiiieeeiiiiiiiiee ettt e e et e e e e e e s ssiiasr e e e e e e s eennnaaaeaeaeean 9
DPM Structure: netX Firmware BIOCK DIagIamcciiiiiiiiiiie et s et e e et e e e e e s e asntaa e e e e e s easnntaaees 10

DPM Structure: Block Diagram Default Dual-Port Memory LaYOULcooiiiiiiiereeeiiiiiiiiee e e esiiivees e e e eeieveees 11
DPM Structure: DPM AGArESS SPACES......uiiieiiiiiiiiiiiie e e eeiiiett e e e e e e st eeae e e s satbareeeaeessatbtaeeeeeesaassstraeeaaessasssreeees 12
Packets: MailDOX SYSEM OVEIVIEWeiiiiiiiiiieie et e ettt e e e e ettt e e e e e s e aeeeeeeeeeeaannsbeeaaaesaannnsaeeeas 35
Data Transfer Mechanism: Mailbox Packet EXChange...........ccooo i 36
Packets: Default Packet HaNAINGeeiiiii ettt e e e e e et e e e e e e e nneeeeeas 40

Figure 9: Packets: Target AddresSing With UIDEST.........cooi oottt e e e e e e et e e e e e e e s anntbeeeeaeeeeanees 42
Figure 10: Packets: USiNg UISIC @and UISICIA........oo ittt et e e e e e et e e e e e e e s antbeeeeaeeeeanees 43
Figure 11: Client/SErver MECNANISIMciiiiiiiie ettt e e e et e e e e e s e e a e e tee e e s s sbtbaeteaeeaassstbaeeaaeeessstbaaseaeeessnnses 44
Figure 12: 1/0S: INPUL / OQULPUL DAA ATBASeeiieeiiiiiiiiiiee e e e e ittt e e e e e ettt e e e s e et b e et e e e e sasatbaetaaeeaassstbaeaeaeeessstbaneeeeeessnnses 49
Figure 13: 1/0s: /0O Data Exchange

Figure 14: Change of State Mechanism (COS): Communication COS Handlingcccciviiieeiiiiiiiiiiie e cciieeee e 61
Figure 15: Change of State Mechanism (COS): Application COS Handling

Figure 16: COMM Channel: Overview - Extended State Field Structure.......

Figure 17: COMM Channel: Example Extended Status Structures...............

Figure 18: Best practise pattern for Channellnit............ ..o et e e e e e st bee e e e e e e e anees

8.2

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:

Table 13

Table 14:
Table 15:

Table 16

Table 17:
Table 18:

Table 19

Table 20:

Table 21

Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:

List of tables

[0] €= L] T LTSRS
D= Le= R 1Y o [T S TP PP P PP PP PPPPPPPPPPPPPRPIRt
Data types Of the rCX OPErating SYSIEIMSuuiiiiii it e ettt e e e e e e e s e e e e e e e e e s tb e et aeeesassntaaeeeaeeeasnntaaees
Terms, abbreviations and definitions.........................
DPM Structure: DPM Layout 8 KByte / 64 Kbyte.......
DPM Structure: System Channel - Overview
DPM Structure: Handshake Channel - Overview
DPM Structure: Communication Channel - Overview....
DPM Structure: Application Channel - OVEIVIEWooii i e e e e enee e e e e e e e anees
Handshake Flag Naming CONVENTION.............uiiiiiiiiiiiir ettt e et e e e e e e e et et e e e e aaantbeeeaaeeaeaneneeeeaaeasaanees
System Channel - Handshake Register Structure
System Channel - Handshake Register and Flag Definition............cccvviiiiiiiiiiiiecc e 24
: System Channel - Host System Flags
System Channel - netX System Flags
Communication Channel - Handshake Register Structure
: Communication Channel - Handshake Register and Flag Definition............ccoooiiiiiiiiii e 28
Communication Channel - Host Communication Flags..........cccccoviiiiiiiinenininnns

Communication Channel - netX Communication Flags..................

: Synchronization - Handshake Register Structure..............cccueuee...

Synchronization - Handshake Register and Flag Definition
: Synchronization - Host Synchronization Flags............ccccccceevvnneee..

Synchronization - NetX SyNnChronization FIAgSiiiiiiiiiiiiii e e e e e
Synchronization - Synchronization INFOrMatioNooi i e
Mailbox Data Buffer Size
General packet StruCtUre: HIL_ PACKET T ..ttt ettt e e e e e ettt e e e e e e e et e e e e e e e eaanneaeeeas
= T 1G] S = (ol 1] e (1ol o o] o [PPSO UPRRRN
Packets: Default Target Addresses for ulDest.........
Packets: Additional Target Addresses for ulDest
Directions and names of packetscccvveeenn.
Packet: System Channel Mailbox State Definition.........................
Packet: Communication Channel Mailbox State Definition............
Packet: Default Packet Handlingooooouiiiiiiieiiiiiiiiieee e
Packet: Send Mailbox Example.........

Packet: Receive Mailbox Example
1/0s: Process Data EXChanQge MOUES.......coi ettt e e e e e s et e e e e e e e e nnnneeeeaa e s
1/0s: Buffered HOSt CONLIONEA MOOE..........oeiiiiiiiiiiiie ettt e st e e st e e e e e anbbeeenaes
1/0Os: Buffered Device Controlled Mode
Lo o1 A @011 o1V A B - 1= U A Y- LSO EPPR SRR
1/0s: Synchronization in Buffered Host Controlled Mode - INPULcooiiiiiiiiiee e e e
1/0s: Synchronization in Buffered Host Controlled Mode - Output
1/0s: Synchronization in Buffered Device Controlled Mode - Input

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060

302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Appendi

X

146/153

Table 42:
Table 43
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49
Table 50:
Table 51
Table 52:
Table 53:
Table 54
Table 55:
Table 56:
Table 57
Table 58:
Table 59
Table 60:
Table 61:
Table 62
Table 63:
Table 64:
Table 65
Table 66:
Table 67
Table 68:
Table 69:
Table 70
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:
Table 98:
Table 99:

Change of State Mechanism (COS): Communication COS Handling
: Change of State Mechanism (COS): Application COS Handling
Change of State Mechanism (COS): Enable Flag Handling
DPM Mapping: Default Mapping
DPM Mapping: 8 Kbyte Mapping
System Channel:
System Channel:
: System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
: System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
: System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
: System Channel:
System Channel:
System Channel:
Handshake Channel: Handshake Channel Layout
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:

COMM Channel

SYS LED

Glossary

: Application Change of State Description
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
COMM Channel:
Table 100:
Table 101:
Table 102:
Table 103:
Table 104:
Table 105:

Second Stage Bootloader Errors
System Error Codes (System)
Common status codes
System Middleware errors

System Channel Structure
System Information Block
netX ldentification, netX Cookie
Hardware Assembly Options (xC Port 0..3)
Manufacturer
Production Date
License Flags 1
License Flags 2
Device Class
Hardware Revision
Channel Information Block
Channel Type
Size / Position of Handshake Registers
Communication Class
Protocol Class
System Handshake Block
System Control Block
System Control Field
System Status Block
System Change of State
System Status Field
System Status Field Description
Hardware Features Field
Hardware Feature Description Field
Send Mailbox
Receive Mailbox

Communication Channel Layout
System Handshake Block
Communication Control Block......
Application Change of State

Common Status Block
Communication State of Change Register
Communication State of Change Description
Communication State
Common Status Block Structure Version
Handshake Mode
Handshake Mode values
Extended Synchronization
Master State Information
Extended Status Block Definition
Extended Status Block Structure
Extended State Field Structure
Extended State Structure
=T 0 LYo IR =N (= A Y TN
Extended State Type ID
Channel Mailbox - Send Mailbox
Channel Mailbox - Receive MailboX............ccooviiiiiiii
High Priority Input / Output Data Image
Reserved Area
Input/Output Process Data Image
Input/Output Process Data Image (8 KByte)

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Appendix 147/153

8.3 Legal notes

Copyright
© Hilscher Gesellschatft fiir Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
lllustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft fir Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Appendix 148/153

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fission processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Appendix 149/153

Warranty

Hilscher Gesellschaft fir Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Appendix 150/153

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft fir
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Glossary

151/153

9 Glossary

Term Description Section
(page)
Change of State (COS) Method to synchronize command / state exchange between a host 4.3 (p 60)
Mechanism application and the netX firmware
Change of State (COS) Part of the COS mechanism, used to selectively set flags without 4.3.3 (p 63)
Enable Flag Mechanism interfering other flags inside the Change of State register
Channel Logical interface / path from the DPM to dedicated parts of the netX | 2.3 (p 14)
System Channel firmware 59 (b 68
Communication Channel System Channel => netX Firmware / System services 5'4 (p 96)
Communication Channel=> Protocol Stack / System services A4 (p 96)
Dual-Port Memory (DPM) Shared memory between the netX firmware and the host 2(p9
application, representing the physical interface to a netX based
device.
Firmware Binary program code executed on the netX chip ARM CPU. It 2(p9
contains the protocol stack and other components.
Handshake The handshake mechanism is used to synchronize data access to 2.3.2(p 15)
Handshake Flags data located in the DPM and therefore ensuring consistent data 3.1(p22)
Handshake Block exchange via DPM. 5.2.3 (p 86)
5.3 (p 94)
5.4.1 (p 98)
Host Program that runs on a host controller (outside the netX chip) and
Host System uses the DPM to communicate and control the netX target.
Host Application
I/0 Area Process data image of a communication channel using handshake 2.4.9 (p 20)
I/O Status mechanism to synchronize access 4.2.1 (p 50)
Holds the cyclic process data / state information of a network 5.4.8 (p 118)
1/0 Status
Additional information regarding the state of input and output 5.4.4 (p 110)
process data in the IO data image
Lock Configuration Function to protect the configuration settings against changes 5.4.2 (p 99)
Mailbox Used to exchange non-cyclic data (packets) between the host 4.14.1 (p 35)
System Mailbox application and the netX firmware (protocol stack). Each channel
Channel Mailbox (system/Communication) offers an own mailbox.
Packet Definition A packet definition is an additional attribute of none-cyclic 4.1.5 (p 44)
. . commands/answers defining the originator of a packet.
Request / Confirmation
Indication / Response Request / Confirmation:
Request defines a command packet created by the host application
and sent to the netX firmware. While a confirmation is the answer of
the netX firmware.
Indication / Response:
Indications are command packets created by the netX firmware and
sent to the host application. A response is the answer packet of the
host application returned to the netX firmware.
Packet None cyclic, packet based commands/answers, exchanged via the 4.1.1 (p 37)

Packet Structure

mailbox system

Process Data Image

see I/0O Data Area

Protocol Stack

A protocol stack is the functional part (state machine) of a fieldbus
network application. It is an element of the netX firmware, while the
firmware can also include multiple protocol stacks (via different
communication channels).

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

Glossary 152/153

Term Description Section
(page)
Reset A netX system offers different types of resets. 6.4 (p 122)

Hardware Reset
System Reset
Channel Initialization

Hardware Reset
Reset of the netX chip and therefore for the whole system

System Reset
Firmware handled reset of the netX target

Channel Initialization
Initialization / re-initialization of a specific Communication Channel

Security Memory Non-volatile memory use to store hardware specific and product 5.2.1 (p 69)
Security EEPROM related information

Watchdog Possibility to monitor the correct processing of the host application 6.5.4 (p 130)
Host Watchdog and/or netX firmware. Including the possibility to automatically shut

Device Watchdog down a fieldbus network communication if the host application

stucks or crashes.

xC Port Denotation of the netX chip internal communication controllers 2(p9

Table 105: Glossary

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual
DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public © Hilscher, 2006- 2019

Contact

153/153

10 Contact

Headquarters

Germany

Hilscher Gesellschaft fir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai

Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support

Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@bhilscher.com

France

Hilscher France S.a.r.l.

69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy

Hilscher Italia S.r.I.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@bhilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support

Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301

E-Mail: info@hilscher.us
Support

Phone: +1 630-505-5301

E-Mail: us.support@hilscher.com

netX Dual-Port Memory Interface | Dual-Port Memory Interface Manual

DOCO060302DPM16EN | Revision 16 | English | 2019-08 | Released | Public

© Hilscher, 2006- 2019

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this Document
	1.2 List of revisions
	1.3 Considerations / Prerequisites and Limitations
	1.4 Terms, abbreviations and definitions
	1.5 References to documents
	1.6 Information and data security

	2 Dual-Port Memory Structure
	2.1 Block Diagram of the default Dual-Port Memory
	2.2 Dual-port memory layout and sizes
	2.2.1 Variable Layout

	2.3 Channel Definitions
	2.3.1 System Channel
	2.3.2 Handshake Channel
	2.3.3 Communication Channel
	2.3.4 Application Channel

	2.4 Data Block Definitions
	2.4.1 System Information Block
	2.4.2 Channel Information Block
	2.4.3 System Control Block
	2.4.4 System Status Block
	2.4.5 Common Control Block
	2.4.6 Common Status Block
	2.4.7 Extended Status Block
	2.4.8 Mailbox System
	2.4.9 I/O Data Areas

	2.5 netX Chip Register Block

	3 Data access and synchronization
	3.1 Handshake Flag naming convention
	3.2 System Channel - Handshake Register and Flags
	3.3 Communication Channel - Handshake Register and Flags
	3.4 Synchronization - Handshake Register and Flags

	4 Data Transfer Mechanism
	4.1 Non-Cyclic Data Transfer via Mailbox and Packets
	4.1.1 Packet structure
	4.1.2 Default Packet Handling
	4.1.3 Packet Addressing via ulDest
	4.1.4 Using ulSrc and ulSrcId
	4.1.5 Client/Server Mechanism
	4.1.6 Packet Fragmentation
	4.1.7 Packet transfer synchronization

	4.2 Cyclic Data Transfer via Input/Output Data Areas
	4.2.1 I/O Data Exchange Modes
	4.2.1.1 Buffered Host Controlled Mode
	4.2.1.2 Buffered Device Controlled Mode

	4.2.2 I/O Data Area Access Synchronization
	4.2.2.1 Synchronization in Buffered Host Controlled Mode
	4.2.2.2 Synchronization in Buffered Device Controlled Mode

	4.3 Change of State Mechanism (COS)
	4.3.1 Communication COS Handling
	4.3.2 Application COS Handling
	4.3.3 Enable Flag Handling

	5 DPM Definitions / Mapping and Content
	5.1 DPM Mapping
	5.2 System Channel
	5.2.1 System Information Block
	5.2.2 Channel Information Block
	5.2.3 System Handshake Block
	5.2.4 System Control Block
	5.2.5 System Status Block
	5.2.6 System Mailbox

	5.3 Handshake Channel
	5.4 Communication Channel
	5.4.1 Channel Handshake Block
	5.4.2 Common Control Block
	5.4.3 Common Status Block
	5.4.3.1 Master State Information

	5.4.4 Extended Status Block
	5.4.5 Channel Mailbox
	5.4.6 High Priority Input/Output Data Image
	5.4.7 Reserved Area
	5.4.8 Input / Output Process Data Image

	5.5 Application Channel

	6 System Behavior and Services
	6.1 Timing Considerations
	6.2 netX Boot Procedure
	6.3 Hardware LEDs
	6.3.1 System LED
	6.3.2 Communication Channel LEDs

	6.4 Reset Handling
	6.4.1 Hardware Reset
	6.4.2 System Reset
	6.4.3 Boot Start
	6.4.4 Update Start

	6.5 Communication Channel Services
	6.5.1 Channel Initialization
	6.5.2 Start / Stop Communication
	6.5.3 Lock / Unlock Configuration
	6.5.4 Channel Watchdog

	6.6 Packet Services

	7 Error codes
	7.1 Second Stage Bootloader Errors
	7.2 netX System Errors (System)
	7.3 netX System Errors (General)
	7.4 Protocol Stack Errors

	8 Appendix
	8.1 List of figures
	8.2 List of tables
	8.3 Legal notes

	9 Glossary
	10 Contact

