

Packet API

netX Dual-Port Memory
Packet-based services (netX 90/4000/4100)

Hilscher Gesellschaft für Systemautomation mbH
www.hilscher.com

DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public

Introduction 2/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Table of content

1 Introduction ... 4
1.1 About this document .. 4
1.2 List of revisions... 4
1.3 Terms, abbreviations and definitions ... 5
1.4 References to documents .. 5
1.5 Information and data security ... 5

2 Packet-based services ... 6
2.1 General packet structure .. 7
2.2 Recommended packet handling... 9
2.3 Additional Packet Data Information .. 10

3 System services ... 11
3.1 Function overview .. 11
3.2 Firmware / System Reset ... 13
3.3 Identifying netX Hardware .. 15

3.3.1 Read Hardware Identification Data ... 16
3.4 Read Hardware Information ... 19
3.5 Identifying Channel Firmware .. 21
3.6 System Channel Information Blocks .. 25

3.6.1 Read System Information Block .. 26
3.6.2 Read Channel Information Block ... 27
3.6.3 Read System Control Block .. 30
3.6.4 Read System Status Block .. 31

3.7 Files and folders ... 32
3.7.1 List Directories and Files from File System ... 33
3.7.2 Downloading / Uploading Files .. 35

3.7.2.1 File Download ... 36
3.7.2.2 File Download Data .. 39
3.7.2.3 File Download Abort ... 41

3.7.3 Uploading Files from netX ... 42
3.7.3.1 File Upload ... 43
3.7.3.2 File Upload Data ... 45
3.7.3.3 File Upload Abort .. 47

3.7.4 Delete a File .. 48
3.7.5 Rename a File ... 50
3.7.6 Creating a CRC32 Checksum ... 52
3.7.7 Read MD5 File Checksum .. 53
3.7.8 Read MD5 File Checksum from File Header ... 55

3.8 Format the Default Partition ... 56
3.9 Determining the DPM Layout ... 58
3.10 Flash Device Label ... 62
3.11 License Information .. 65
3.12 Error Log information ... 66
3.13 General packet fragmentation .. 68
3.14 Device Data Provider ... 72

3.14.1 Device Data Provider Get service ... 75
3.14.2 Device Data Provider Set service .. 77

3.15 Exception handler .. 78
3.15.1 Exception Information service ... 78
3.15.2 Read Physical Memory service ... 81

4 Communication Channel services.. 83
4.1 Function overview .. 83
4.2 Communication Channel Information Blocks ... 84

4.2.1 Read Common Control Block .. 84
4.2.2 Read Common Status Block ... 86
4.2.3 Read Extended Status Block ... 88

4.3 Read the Communication Flag States ... 90
4.4 Read I/O Process Data Image Size ... 92
4.5 Channel Initialization .. 95
4.6 Delete Protocol Stack Configuration .. 97

Introduction 3/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.7 Lock / Unlock Configuration ... 99
4.8 Start / Stop Communication ... 100
4.9 Channel Watchdog Time .. 101

4.9.1 Get Channel Watchdog Time .. 101
4.9.2 Set Watchdog Time ... 102

4.10 Channel Component Information ... 103
4.11 Communication channel packet fragmentation .. 105

5 Protocol Stack services ... 108
5.1 Function overview .. 108
5.2 DPM Handshake Configuration .. 109

5.2.1 Set Trigger Type ... 109
5.2.2 Get Trigger Type ... 112

5.3 Modify Configuration Settings .. 114
5.3.1 Set Parameter Data .. 117

5.4 Network Connection State ... 119
5.4.1 Mechanism .. 119
5.4.2 Obtain List of Slave Handles ... 121
5.4.3 Obtain Slave Connection Information .. 123

5.5 Protocol Stack Notifications / Indications ... 125
5.5.1 Register Application .. 126
5.5.2 Unregister Application ... 127

5.6 Link Status Changed Service ... 128
5.7 Perform a Bus Scan ... 130
5.8 Get Information about a Fieldbus Device ... 132
5.9 Configuration in Run .. 134

5.9.1 Verify Configuration Database .. 134
5.9.2 Activate Configuration Database ... 136

5.10 Remanent Data .. 137
5.10.1 Set Remanent Data ... 138
5.10.2 Store Remanent Data.. 141

6 Status and error codes .. 143
6.1 Packet error codes ... 143

7 Appendix ... 147
7.1 List of figures .. 147
7.2 List of tables ... 147
7.3 Legal notes ... 151
7.4 Contacts ... 154

Introduction 4/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

1 Introduction
1.1 About this document
The netX Dual-Port Memory Interface Manual describes the physical dual-port memory (DPM)
layout, content and the general handling procedures and includes the usage of a mailbox system
to exchange non-cyclic packet-based data with the firmware and the general definition of packets,
packet structures and the handling of command packets and confirmation packets.

This manual

 is an extension to the netX Dual-Port Memory Interface Manual,

 defines and describes the non-cyclic packet-based services available in most firmware, and

 focus on the available system services, their functionality and definitions.

This manual is valid for firmware based on netX 90/4000/4100.

For firmware based on netX 10/50/51/52/100/500, use the manual "Packet API, netX Dual-Port
Memory, Packet-based services (netX 10/50/51/52/100/500), DOC161001APIxxEN".

1.2 List of revisions
Rev Date Name Revisions
1 2019-03-27 HHE, LCO Created for netX 90/4000/4100-based firmware.
2 2019-05-10 ALM, HHE Section Firmware / System Reset: Description of update-start clarified.
 Section Files and folders: Note added on file/folder handling for raw FLASH.

 Section Device Data Provider Set service: More description added.

 Section Delete Protocol Stack Configuration: Handling for remanent data added.

 Sections Set Remanent Data and Store Remanent Data: More description added.
3 2019-08-21 HHE, ALM Table 11 updated.
 Section Rename a File: Added Application channels 0, 1 to table.

 Section Read Physical Memory service: Added note about locked-up state.

 Section Exception handler: Added more details about exception handler.
Table 1: List of revisions

Introduction 5/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

1.3 Terms, abbreviations and definitions
Term Description
DPM Dual-port memory
FW Firmware
RTC Real-time clock

Table 2: Terms, abbreviations and definitions

1.4 References to documents
[1] Hilscher Gesellschaft für Systemautomation mbH: netX Dual-Port Memory Interface Manual,

Revision 15, English.

[2] Hilscher Gesellschaft für Systemautomation mbH: Application note, Fragmentation of
packets, Revision 1, English.

Table 3: References to documents

1.5 Information and data security
Please take all the usual measures for information and data security, in particular for devices with
Ethernet technology. Hilscher explicitly points out that a device with access to a public network
(Internet) must be installed behind a firewall or only be accessible via a secure connection such as
an encrypted VPN connection. Otherwise, the integrity of the device, its data, the application or
system section is not safeguarded.

Hilscher can assume no warranty and no liability for damages due to neglected security measures
or incorrect installation.

Packet-based services 6/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

2 Packet-based services
The Non-cyclic data transfer via mailboxes using packets is the basis for packet-based
services. For an explanation and description, see reference [1] that also includes the general
packet structure, the packet elements, and the packet exchange with the netX-based firmware.

Structures and definitions

The following C-header files provide structures and definitions used in this document.

HIL_Packet.h Provides the “Packet” structure

HIL_SystemCmd.h Provides the system commands and structures

HIL_ApplicationCmd.h Provides the commands and structures for the application task

HIL_DualPortMemory.h Provides the netX dual-port memory layout

For using protocol-specific functions, you need further header files provided by the protocol stack:
Protocol-specific header files are coming with the firmware implementation and using additional
header files.

Due to further development and standardization, new header files were introduced:
file names HIL_*.h.

Prefix RCX_ in definitions is replaced by the prefix HIL_.

Header file rcx_Public.h is replaced by HIL_Packet.h, HIL_SystemCmd.h, and
HIL_ApplicationCmd.h.

Header file rcx_User.h is replaced by HIL_DualPortMemory.h.

Packet-based services 7/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

2.1 General packet structure
The structure HIL_PACKET_T is the general structure of a packet. The description is a short
extract from the information in the netX Dual-Port Memory Interface Manual (reference [1]).

Area Variable / Element Type Value / Range Description
Header
(tHead)

ulDest uint32_t 0 ... 0xFFFFFFFF Destination Address / Handle
ulSrc uint32_t 0 ... 0xFFFFFFFF Source Address / Handle
ulDestId uint32_t 0 ... 0xFFFFFFFF Destination Identifier
ulSrcId uint32_t 0 ... 0xFFFFFFFF Source Identifier
ulLen uint32_t 0 ... max. packet data

size
Packet Data Length (in byte)

ulId uint32_t 0 ... 0xFFFFFFFF Packet Identifier
ulSta uint32_t 0 ... 0xFFFFFFFF Packet State / Error
ulCmd uint32_t 0 ... 0xFFFFFFFF Packet Command / Confirmation
ulExt uint32_t 0 or

extension bit mask
Packet Extension

ulRout uint32_t 0 ... 0xFFFFFFFF Reserved (routing information)
Packet Data
(abData)

abData … 0 … 0xFF Packet Data (packet-specific data)

Table 4: General packet structure: HIL_PACKET_T

Note: In this document, only the elements which have to be set or changed to create a
specific packet are outlined, unchanged elements of the packet are not described.

Variable /
Element

Brief description

ulDest

ulDestId

ulSrc

ulSrcId

Destination Address / Handle

Destination Identifier

Source Address / Handle

Source Identifier
These elements are used to address the receiver and sender of a packet.

ulLen Packet Data Length
ulLen defines how many data follow the packet header. The length is counted in bytes. The packet
header length is not included in ulLen and has a fixed length of 40 bytes (see
HIL_PACKET_HEADER_T)

ulId Packet Identifier
ulId is intended be used as a unique packet number to destingush between multiple packets of the
same type (e.g. multiple packet of the same ulCmd). It is set by the packet creator.

ulSta Packet State / Error
ulSta is used to signal packet errors in an answer (response/confirmation) packet. The value is
always zero for command packets (request/indication), because commands with an error are not
meaningful.
In answer packets used to signal any problem with the packet header or packet data content (e.g.
ERR_HIL_UNKNOWN_COMMAND, ERR_HIL_INVALID_PACKET_LEN, ERR_HIL_PARAMETER_ERROR
etc.)

Packet-based services 8/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

ulCmd Packet Command / Packet Answer
ulCmd is a predefined code which marks the packet as a command or answer packet. Command
codes are defined as even numbers while answers are defined as odd numbers.
Example: Reading the hardware identification of a netX-based device
 HIL_HW_IDENTIFY_REQ (0x00001EB8)

Command to read general hardware information like device number / serial number etc.
 HIL_HW_IDENTIFY_CNF (0x00001EB9) Answer to the HIL_HW_IDENTIFY_REQ command.

ulExt Packet Extension
ulExt is used to mark packets as packets of a sequence, in case a transfer consists of multiple
packets (e.g. file download).

ulRout Reserved (Routing Information)
This is reserved for further use (shall not be changed by the receiver of a packet).

abData Packet Data
abData defines the start of the user data area (payload) of the packet. The data content depends on
the command or answer given in ulCmd. Each command and answer has a defined user data content
while ulLen defines the number of user data bytes contained in the packet.

Table 5: Brief description of the elements/variables of a packet

Packet-based services 9/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

2.2 Recommended packet handling
 Only one process should handle a mailbox, because multiple processes, accessing the same

mailbox, are able to steal packets from each other.

 Receive packet handling should be done before the send packet handling, helping to prevent
buffer underruns inside the netX firmware (packet buffers in the firmware are limited).

 A command packet buffer should be initialized with 0 before filled with data.

 ulId of each command packet should be unique allowing to follow up the packet execution.

 The receive packet buffer should have the maximum packet size to be able to store a packet
with the maximum size. Packet execution on the netX firmware is not serialized and therefore
it is unpredictable which packet will be received next if multiple packets are active.

 An answer packet should always be checked against the command packet to be sure to
received the requested information. The order of receive packets is not guaranteed when
multiple send command are activated. The following elements should be compared.

Send Packet Receive Packet
ulCmd <-> ulCmd & HIL_MSK_PACKET_ANSWER

ulId <-> ulId

ulSrc <-> ulSrc

ulSrcId <-> ulSrcId

 Note: The answer code is defined as "command code +1" therefore the lowest bit must be
masked out if compared.

 Always check ulSta of the answer packet to be 0 before evaluating the packet data, ulSta
unequal to 0 signals a packet error.

Packet-based services 10/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

2.3 Additional Packet Data Information
Packet data always depends on the command / answer code given in ulCmd.

Some of the packet data structures are containing elements where the element length has to be
defined / obtained from another element in the structure.

Example: MD5 request with a null terminated file name in the structure
typedef __HIL_PACKED_PRE struct HIL_FILE_GET_MD5_REQ_DATA_Ttag
{
 uint32_t ulChannelNo; /* 0 = Channel 0, ..., 3
= Channel 3, 0xFFFFFFFF = System, see HIL_FILE_xxxx */
 uint16_t usFileNameLength; /* length of NUL-
terminated file name that will follow */
 /* a NUL-terminated file name will follow here */
} __HIL_PACKED_POST HIL_FILE_GET_MD5_REQ_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_FILE_GET_MD5_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /* packet header */
 HIL_FILE_GET_MD5_REQ_DATA_T tData; /* packet data */
} __HIL_PACKED_POST HIL_FILE_GET_MD5_REQ_T;

The structure does not contain an element szFileName. The comment inside the structure
explains this behavior, and the length of the filename is given in usFileNameLength.

If such an element should be filled out, the filename in this case has to be placed right behind the
length parameter ulFileNameLength.

HIL_PACKET tPacket;
HIL_FILE_GET_MD5_REQ_DATA_T* ptMD5Data = (HIL_FILE_GET_MD5_REQ_DATA_T*)tPacket.abData;
uint8_t* szFileName = “config.nxd”

memset(&tPacket, 0, sizeof(tPacket));

Initialize the packet structure elements:
/* set the “normal” fields */
ptMD5Data->ulChannelNo = 0;
ptMD5Data->usFileNameLength = strlen(szFilename)+1;

Append the subsequent information (e.g. file name):
/* append the file name*/
strcpy((uint8_t*)(ptMD5Data + 1), szFileName);

Packet data is also available as lists of elements. Depending to the command, such lists are either
defined by a starting data element given the number of elements in the subsequent packet data
area or must be calculated by using the packet data length ulLen.

System services 11/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3 System services
The netX operating system of the device and the middleware components of the firmware offer
system services. Most of the functions are common to all netX-based devices. Differences are
possible if a device does not offer all common hardware components, e.g. Ethernet interface, file
system, etc.

3.1 Function overview
System services Command definition Page

Reset

Firmware and system reset HIL_FIRMWARE_RESET_REQ 13

Identification and information

Read the general hardware identification information HIL_HW_IDENTIFY_REQ 15

Read the device-specific hardware information HIL_HW_HARDWARE_INFO_REQ 19

Read the name and version or firmware, operating
system or protocol stack running on a communication
channel

HIL_FIRMWARE_IDENTIFY_REQ 21

System Channel Information Blocks

Read the system channel: System Information Block HIL_SYSTEM_INFORMATION_BLOCK_REQ 26

Read the system channel: Channel Information Block HIL_CHANNEL_INFORMATION_BLOCK_REQ 27

Read the system channel: System Control Block HIL_SYSTEM_CONTROL_BLOCK_REQ 30

Read the system channel: System Status Block HIL_SYSTEM_STATUS_BLOCK_REQ 31

Files and folders

List directories and files from the file system HIL_DIR_LIST_REQ 33

Download a file (start, send file data, abort) HIL_FILE_DOWNLOAD_REQ 36

HIL_FILE_DOWNLOAD_DATA_REQ 39

HIL_FILE_DOWNLOAD_ABORT_REQ 41

File Upload (start, read file data, abort) HIL_FILE_UPLOAD_REQ 43

HIL_FILE_UPLOAD_DATA_REQ 45

HIL_FILE_UPLOAD_ABORT_REQ 47

File Delete HIL_FILE_DELETE_REQ 48

File Rename HIL_FILE_RENAME_REQ 50

Create a CRC32 checksum (example code) 52

Calculate the MD5 checksum for a given file HIL_FILE_GET_MD5_REQ 53

Read the MD5 checksum from the file header of a given
file

HIL_FILE_GET_HEADER_MD5_REQ 55

Format the default partition containing the file system HIL_FORMAT_REQ 56

System services 12/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

License Information

Read the license information stored on the netX
hardware

HIL_HW_LICENSE_INFO_REQ 65

Determining the DPM Layout

Read and evaluate the DPM Layout of the system /
communication channels

HIL_DPM_GET_BLOCK_INFO_REQ 58

Device information

Read device information HIL_DDP_SERVICE_GET_REQ 75

Change device information (temporarily) HIL_DDP_SERVICE_SET_REQ 77

Error log information

Read startup error log information HIL_SYSTEM_ERRORLOG_REQ_T 66

Exception Handler (only)

Get exception context from crashed firmware HIL_EXCEPTION_INFO_REQ 78

Read physical memory from crashed firmware HIL_PHYSMEM_READ_REQ 81

Table 6: System services (function overview)

System services 13/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.2 Firmware / System Reset
A Firmware / System Reset resets the entire netX target.

Firmware Reset request

The application uses the following packet in order to reset the netX chip. The application has to
send this packet through the system mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 8 Packet data length (in Bytes)
ulCmd uint32_t 0x00001E00 HIL_FIRMWARE_RESET_REQ
Data
ulTimeToReset uint32_t 0 Time delay until reset is executed in milliseconds [ms]

Fix: 500ms (not changeable)
ulResetMode uint32_t 0 Reset Mode & Parameter

Specify the kind of reset to execute (see table below).
Table 7: HIL_FIRMWARE_RESET_REQ_T – Firmware Reset request

Variable: ulResetMode

Bit No. Definition / Description
31..9 reserved
8 Delete complete remanent data area after reset.

1 = For mode “bootstart” and “updatestart”, this value specifies that the remanent data area will be deleted.
0 = Remanent data area will not be deleted.

7..4 Reset Parameter
Arguments that will be evaluated upon system reset.
0x0..0xF = For mode “updatestart”, this value specifies the firmware that will be installed.

3..0 Reset Mode
0 = HIL_SYS_CONTROL_RESET_MODE_COLDSTART

The cold start will perform a reset of the device and starts the installed firmware again.
1 = HIL_SYS_CONTROL_RESET_MODE_WARMSTART

Unused.
2 = HIL_SYS_CONTROL_RESET_MODE_BOOTSTART

The boot start will perform a reset of the device and starts the maintenance firmware. The boot start can be
used to start the maintenance firmware without starting an update process (idle mode).
3 = HIL_SYS_CONTROL_RESET_MODE_UPDATESTART

The update start will perform a reset of the device and start the maintenance firmware.
If a valid update file is available, it will be automatically processed and installed.
If no update file is available or if the update file is not valid, the maintenance firmware will change into error
mode , changes the SYS LED (to yellow on) and sets an error code (e.g. ERR_HIL_NOT_AVAILABLE,
0xC0001152).

Other values are reserved

System services 14/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Packet structure reference
/* CHANNEL RESET REQUEST */
#define HIL_FIRMWARE_RESET_REQ 0x00001E00

typedef struct HIL_FIRMWARE_RESET_REQ_DATA_Ttag
{
 uint32_t ulTimeToReset; /* time to reset in ms */
 uint32_t ulResetMode; /* reset mode parameter */
} HIL_FIRMWARE_RESET_REQ_DATA_T;

typedef struct HIL_FIRMWARE_RESET_REQtag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FIRMWARE_RESET_REQ_DATA_T tData; /* packet data */
} HIL_FIRMWARE_RESET_REQ_T;

Firmware Reset confirmation

Variable Type Value / Range Description
ulSta uint32_t See Below Status / error code, see Section 6.
ulCmd uint32_t 0x00001E01 HIL_CHANNEL_RESET_CNF

Table 8: HIL_FIRMWARE_RESET_CNF_T – Firmware Reset confirmation

Packet structure reference
/* CHANNEL RESET CONFIRMATION */
#define HIL_CHANNEL_RESET_CNF HIL_CHANNEL_RESET_REQ+1

typedef struct HIL_FIRMWARE_RESET_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FIRMWARE_RESET_CNF_T;

System services 15/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.3 Identifying netX Hardware
Hilscher netX-based products uses a Flash Device Label to store certain hardware and product-
related information that helps to identify the hardware.

The firmware reads the information during a power-up reset and copies certain entries into the
System Information Block of the system channel located in the dual-port memory.

A configuration tool like SYCON.net evaluates the information and use them to decide whether a
firmware file can be downloaded or not. If the information in the firmware file does not match the
information read from the dual-port memory, the attempt to download will be rejected.

The following fields are relevant to identify netX hardware.

 Device Number, Device Identification

 Serial Number

 Manufacturer

 Device Class

 Hardware Assembly Options

 Production Date

 License Code

Dual-Port Memory Default Values

In case Flash Device Label is not present or provides inconsistent data, the firmware initializes the
system information block with the following default data:

 Device Number, Device Identification Set to zero

 Serial Number Set to zero

 Manufacturer Set to UNDEFINED

 Device Class Set to UNDEFINED

 Hardware Assembly Options Set to NOT AVAILABLE

 Production Date Set to zero for both, production year and week

 License Code Set to zero

System services 16/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.3.1 Read Hardware Identification Data
The command returns the device number, hardware assembly options, serial number and revision
information of the netX hardware. The request packet is passed through the system mailbox only.

Hardware Identify request

The application uses the following packet in order to read netX hardware information.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001EB8 HIL_HW_IDENTIFY_REQ

Table 9: HIL_HW_IDENTIFY_REQ_T – Hardware Identify request

Packet structure reference
/* IDENTIFY FIRMWARE REQUEST */
#define HIL_HW_IDENTIFY_REQ 0x00001EB8

typedef struct HIL_HW_IDENTIFY_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_HW_IDENTIFY_REQ_T;

System services 17/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Hardware Identify confirmation

The channel firmware returns the following packet.

Variable Type Value / Range Description
ulLen uint32_t

36
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EB9 HIL_HW_IDENTIFY_CNF
Data
ulDeviceNumber uint32_t 0 … 0xFFFFFFFF Device Number
ulSerialNumber uint32_t 0 … 0xFFFFFFFF Serial Number
ausHwOptions[4] uint16_t 0 … 0xFFFF Hardware Assembly Option
usDeviceClass uint16_t 0 … 0xFFFF netX Device Class
bHwRevision uint8_t 0 … 0xFF Hardware Revision Index
bHwCompatibility uint8_t 0 … 0xFF Hardware Compatibility Index
ulBootType uint32_t 0 … 8 Hardware Boot Type
ulChipType uint32_t 0 … n Chip Type (see tables below)
ulChipStep uint32_t 0 … 0x000000FF Chip Step
ulRomcodeRevision uint32_t 0 … 0x00000FFF ROM Code Revision

Table 10: HIL_HW_IDENTIFY_CNF_T – Hardware Identify confirmation

Packet structure reference
/* HARDWARE IDENTIFY CONFIRMATION */
#define HIL_HW_IDENTIFY_CNF HIL_HW_IDENTIFY_REQ+1

typedef struct HIL_HW_IDENTIFY_CNF_DATA_Ttag
{
 uint32_t ulDeviceNumber; /* device number / identification */
 uint32_t ulSerialNumber; /* serial number */
 uint16_t ausHwOptions[4]; /* hardware options */
 uint16_t usDeviceClass; /* device class */
 uint8_t bHwRevision; /* hardware revision */
 uint8_t bHwCompatibility; /* hardware compatibility */
 uint32_t ulBootType; /* boot type */
 uint32_t ulChipTyp; /* chip type */
 uint32_t ulChipStep; /* chip step */
 uint32_t ulRomcodeRevision; /* rom code revision */
} HIL_HW_IDENTIFY_CNF_DATA_T;

typedef struct HIL_HW_IDENTIFY_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_HW_IDENTIFY_CNF_DATA_T tData; /* packet data */
} HIL_HW_IDENTIFY_CNF_T;

System services 18/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Boot Type

This field indicates how the netX operating system was started.

Value Definition / Description
0x00000000 ROM Loader: PARALLEL FLASH (SRAM Bus)
0x00000001 ROM Loader: PARALLEL FLASH (Extension Bus)
0x00000002 ROM Loader: DUAL-PORT MEMORY
0x00000003 ROM Loader: PCI INTERFACE
0x00000004 ROM Loader: MULTIMEDIA CARD
0x00000005 ROM Loader: I2C BUS
0x00000006 ROM Loader: SERIAL FLASH
0x00000007 Second Stage Boot Loader: SERIAL FLASH
0x00000008 Second Stage Boot Loader: RAM
0x00000009 ROM Loader: Internal Flash
Other values are reserved

Table 11: Boot Type

Chip Type

This field indicates the type of chip that is used.

Value Definition / Description
0x00000000 Unknown
0x00000001 netX 500
0x00000002 netX 100
0x00000003 netX 50
0x00000004 netX 10
0x00000005 netX 51
0x00000006 netX 52
0x00000007 netX 4000
0x00000008 netX 4100
0x00000009 netX 90
Other values are reserved

Table 12: Chip Type

System services 19/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.4 Read Hardware Information

Hardware Info request

Obtain information about the netX hardware. The packet is send through the system mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001EF6 HIL_HW_HARDWARE_INFO_REQ

Table 13: HIL_HW_HARDWARE_INFO_REQ_T – Hardware Info request

Packet structure reference
/* READ HARDWARE INFORMATION REQUEST */
#define HIL_HW_HARDWARE_INFO_REQ 0x00001EF6

typedef struct HIL_HW_HARDWARE_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_HW_HARDWARE_INFO_REQ_T;

Hardware Info confirmation

Variable Type Value / Range Description
ulLen uint32_t

56
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EF7 HIL_HW_HARDWARE_INFO_CNF
Data
ulDeviceNumber uint32_t 0 … 0xFFFFFFFF Device Number / Identification
ulSerialNumber uint32_t 0 … 0xFFFFFFFF Serial Number
ausHwOptions[4] Array of

uint16_t
0 … 0xFFFF Hardware Assembly Option

usManufacturer uint16_t 0 … 0xFFFF Manufacturer Code
usProductionDate uint16_t 0 … 0xFFFF Production Date
ulLicenseFlags1 uint32_t 0 … 0xFFFFFFFF License Flags 1
ulLicenseFlags2 uint32_t 0 … 0xFFFFFFFF License Flags 2
usNetxLicenseID uint16_t 0 … 0xFFFF netX License Identification
usNetxLicenseFlags uint16_t 0 … 0xFFFF netX License Flags
usDeviceClass uint16_t 0 … 0xFFFF netX Device Class
bHwRevision uint8_t 0 …0xFFFF Hardware Revision Index
bHwCompatibility uint8_t 0 Hardware Compatibility Index
ulHardware
Features1

uint32_t 0 Hardware Features 1 (not used, set to 0)

ulHardware
Features2

uint32_t 0 Hardware Features 2 (not used, set to 0)

bBootOption uint8_t 0 Boot Option (not used, set to 0)
bReserved[11] uint8_t 0 Reserved, set to 0

Table 14: HIL_HW_HARDWARE_INFO_CNF_T – Hardware Info confirmation

System services 20/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Packet structure reference
/* READ HARDWARE INFORMATION CONFIRMATION */
#define HIL_HW_HARDWARE_INFO_CNF HIL_HW_HARDWARE_INFO_REQ+1

typedef struct HIL_HW_HARDWARE_INFO_CNF_DATA_Ttag
{
 uint32_t ulDeviceNumber; /* device number */
 uint32_t ulSerialNumber; /* serial number */
 uint16_t ausHwOptions[4]; /* hardware assembly options */
 uint16_t usManufacturer; /* device manufacturer */
 uint16_t usProductionDate; /* production date */
 uint32_t ulLicenseFlags1; /* license flags 1 */
 uint32_t ulLicenseFlags2; /* license flags 2 */
 uint16_t usNetxLicenseID; /* license ID */
 uint16_t usNetxLicenseFlags; /* license flags */
 uint16_t usDeviceClass; /* device class */
 uint8_t bHwRevision; /* hardware revision */
 uint8_t bHwCompatibility; /* hardware compatibility */
 uint32_t ulHardwareFeatures1; /* not used, set to 0 */
 uint32_t ulHardwareFeatures2; /* not used, set to 0 */
 uint8_t bBootOption; /* not used, set to 0 */
 uint8_t bReserved[11]; /* reserved, set to 0 */
} HIL_HW_HARDWARE_INFO_CNF_DATA_T;

typedef struct HIL_HW_HARDWARE_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_HW_HARDWARE_INFO_CNF_DATA_T tData; /* packet data */
} HIL_HW_HARDWARE_INFO_CNF_T;

System services 21/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.5 Identifying Channel Firmware
This request returns the name, version and date of the operating system, firmware or protocol
stack running on the netX chip. The information depends on the kind of executed firmware
(maintenance firmware or protocol firmware).

The destination address ulDest and the ulChannelID parameter within the packet are used to
define the returned information.

Delivered versions information according to ulDest and ulChannelID:

Firmware: System or Communication Channel Mailbox

ulDest ulChannelID Returned Information
HIL_PACKET_DEST_SYSTEM 0xFFFFFFFF Version of the operating system

0 ... 3 Protocol stack name of the communication channel
given by ulChannelID

HIL_PACKET_DEST_DEFAULT_CHANNEL 0xFFFFFFFF Firmware name (see note below)
0 ... 3 Protocol stack name of the communication channel

given by ulChannelID

Maintenance Firmware: System Channel Mailbox

ulDest ulChannelID Returned Information
HIL_PACKET_DEST_SYSTEM 0xFFFFFFFF Version of the operating system

HIL_PACKET_DEST_DEFAULT_CHANNEL 0xFFFFFFFF Maintenance firmware version

Note: Usually Firmware Name and Protocol Stack Name of communication channel 0 are
equal

System services 22/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Firmware Identify request

Depending on the requirements, the packet is passed through the system mailbox to obtain
operating system information, or it is passed through the channel mailbox to obtain protocol stack
related information.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000

0x00000020
HIL_PACKET_DEST_SYSTEM
HIL_PACKET_DEST_DEFAULT_CHANNEL

ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EB6 HIL_FIRMWARE_IDENTIFY_REQ
Data
ulChannelId uint32_t see definition

above
Channel Identification

Table 15: HIL_FIRMWARE_IDENTIFY_REQ_T – Firmware Identify request

Packet structure reference
/* IDENTIFY FIRMWARE REQUEST */
#define HIL_FIRMWARE_IDENTIFY_REQ 0x00001EB6

/*Channel Identification */
#define HIL_SYSTEM_CHANNEL 0xFFFFFFFF
#define HIL_COMM_CHANNEL_0 0x00000000
#define HIL_COMM_CHANNEL_1 0x00000001
#define HIL_COMM_CHANNEL_2 0x00000002
#define HIL_COMM_CHANNEL_3 0x00000003

typedef struct HIL_FIRMWARE_IDENTIFY_REQ_DATA_Ttag
{
 uint32_t ulChannelId; /* channel ID */
} HIL_FIRMWARE_IDENTIFY_REQ_DATA_T;

typedef struct HIL_FIRMWARE_IDENTIFY_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FIRMWARE_IDENTIFY_REQ_DATA_T tData; /* packet data */
} HIL_FIRMWARE_IDENTIFY_REQ_T;

Firmware Identify confirmation

The channel firmware returns the following packet.

Variable Type Value / Range Description
ulLen uint32_t

76
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EB7 HIL_FIRMWARE_IDENTIFY_CNF
Data
tFwVersion Structure see below Firmware Version
tFwName Structure see below Firmware Name
tFwDate Structure see below Firmware Date

Table 16: HIL_FIRMWARE_IDENTIFY_CNF_T – Firmware Identify confirmation

System services 23/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Packet structure reference
/* IDENTIFY FIRMWARE CONFIRMATION */
#define HIL_FIRMWARE_IDENTIFY_CNF HIL_FIRMWARE_IDENTIFY_REQ+1

typedef struct HIL_FW_IDENTIFICATION_Ttag
{
 HIL_FW_VERSION_T tFwVersion; /* firmware version */
 HIL_FW_NAME_T tFwName; /* firmware name */
 HIL_FW_DATE_T tFwDate; /* firmware date */
} HIL_FW_IDENTIFICATION_T;

typedef struct HIL_FIRMWARE_IDENTIFY_CNF_DATA_Ttag
{
 HIL_FW_IDENTIFICATION_T tFirmwareIdentification; /* firmware ID */
} HIL_FIRMWARE_IDENTIFY_CNF_DATA_T;

typedef struct HIL_FIRMWARE_IDENTIFY_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FIRMWARE_IDENTIFY_CNF_DATA_T tData; /* packet data */
} HIL_FIRMWARE_IDENTIFY_CNF_T;

Version tFwVersion

The version information field consist of four parts separated into a Major, Minor, Build and Revision
section.

 Major number, given in hexadecimal format [0..0xFFFF].
The number is increased for significant enhancements in functionality (backward
compatibility cannot be assumed)

 Minor number, given in hexadecimal format [0..0xFFFF].
The number is incremented when new features or enhancements have been added
(backward compatibility is intended).

 Build number, given in hexadecimal format [0..0xFFFF].
The number denotes bug fixes or a new firmware build

 Revision number, given in hexadecimal format [0..0xFFFF].
It is used to signal hotfixes for existing versions. It is set to zero for new Major / Minor / Build
updates.

Version Structure
typedef struct HIL_FW_VERSION_Ttag
{
 uint16_t usMajor; /* major version number */
 uint16_t usMinor; /* minor version number */
 uint16_t usBuild; /* build number */
 uint16_t usRevision; /* revision number */
} HIL_FW_VERSION_T;

System services 24/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Name tFwName

This field holds the name of the firmware comprised of ASCII characters.

 bNameLength holds the length of valid bytes in the abName[63] array.

 abName[63] contains the firmware name as ASCII characters, limited to 63 characters

Firmware Name Structure:
typedef struct HIL_FW_NAME_Ttag
{
 uint8_t bNameLength; /* length of firmware name */
 uint8_t abName[63]; /* firmware name */
} HIL_FW_NAME_T;

Date tFwDate

The tFwDate field holds the date of the firmware release.

 usYear year is given in hexadecimal format in the range [0..0xFFFF]

 bMonth month is given in hexadecimal format in the range [0x01..0x0C]

 bDay day is given in hexadecimal format in the range [0x01..0x1F].

Firmware Date Structure:
typedef struct HIL_FW_DATE_Ttag
{
 uint16_t usYear; /* firmware creation year */
 uint8_t bMonth; /* firmware creation month */
 uint8_t bDay; /* firmware creation day */
} HIL_FW_DATE_T;

System services 25/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.6 System Channel Information Blocks
The following packets are defined to make system data blocks available for read access through
the mailbox channel. These packets are used by configuration tools, like SYCON.net, if they are
connected via a serial interface and need to read this information from the netX hardware.

If the requested data block exceeds the maximum mailbox size, the block is transferred in a
sequenced or fragmented manner (see netX Dual-Port Memory Interface Manual for details about
fragmented packet transfer).

Available Blocks:

Block Name DPM Structure Description

System Information Block HIL_DPMSYSTEM_INFO_BLOCK_T Contains general information of the
hardware (device) like the cookie,
device number, serial number etc.

Channel Information Block HIL_DPM_CHANNEL_INFO_BLOCK_T Contains information about the available
channels in a firmware

System Control Block HIL_DPM_SYSTEM_CONTROL_BLOCK_T Contains available control registers and
flags to control the hardware

System Status Block HIL_DPM_SYSTEM_STATUS_BLOCK_T Contains state information about the
hardware (e.g. Boot Error, System
Error, CPU Load information etc.)

System services 26/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.6.1 Read System Information Block
The packet outlined in this section is used to request the System Information Block. Therefore it is
passed through the system mailbox.

System Information Block request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001E32 HIL_SYSTEM_INFORMATION_BLOCK_REQ

Table 17: HIL_READ_SYS_INFO_BLOCK_REQ_T – System Information Block request

Packet structure reference
/* READ SYSTEM INFORMATION BLOCK REQUEST */
#define HIL_SYSTEM_INFORMATION_BLOCK_REQ 0x00001E32

typedef struct HIL_READ_SYS_INFO_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_READ_SYS_INFO_BLOCK_REQ_T;

System Information Block confirmation

The following packet is returned.

Variable Type Value / Range Description
ulLen uint32_t

48
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E33 HIL_SYSTEM_INFORMATION_BLOCK_CNF
Data
tSystemInfo Structure System Information Block

See netX Dual-Port Memory Interface Manual for more details.

Table 18: HIL_READ_SYS_INFO_BLOCK_CNF_T – System Information Block confirmation

Packet structure reference
/* READ SYSTEM INFORMATION BLOCK CONFIRMATION */
#define HIL_SYSTEM_INFORMATION_BLOCK_CNF HIL_SYSTEM_INFORMATION_BLOCK_REQ+1

typedef struct HIL_READ_SYS_INFO_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_SYSTEM_INFO_BLOCK_T tSystemInfo; /* packet data */
} HIL_READ_SYS_INFO_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_SYS_INFO_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_SYS_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_SYS_INFO_BLOCK_CNF_T;

System services 27/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.6.2 Read Channel Information Block
The packet outlined in this section is used to request the Channel Information Block. Therefore it is
passed through the system mailbox. There is one packet for each of the channels. The channels
are identified by their channel ID or port number. The total number of blocks is part of the structure
of the Channel Information Block of the system channel.

Channel Information Block request

This packet is used to request the Channel Information Block
(HIL_DPM_CHANNEL_INFO_BLOCK_T) of a channel specified by ulChannelId.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E34 HIL_CHANNEL_INFORMATION_BLOCK_REQ
Data
ulChannelId uint32_t

0 … 7
Channel Identifier
Port Number, Channel Number

Table 19: HIL_READ_CHNL_INFO_BLOCK_REQ_T – Channel Information Block request

Packet structure reference
/* READ CHANNEL INFORMATION BLOCK REQUEST */
#define HIL_CHANNEL_INFORMATION_BLOCK_REQ 0x00001E34

typedef struct HIL_READ_CHNL_INFO_BLOCK_REQ_DATA_Ttag
 uint32_t ulChannelId; /* channel id */
} HIL_READ_CHNL_INFO_BLOCK_REQ_DATA_T;

typedef struct HIL_READ_CHNL_INFO_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_CHNL_INFO_BLOCK_REQ_DATA_T tData; /* packet data */
} HIL_READ_CHNL_INFO_BLOCK_REQ_T;

System services 28/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Channel Information Block confirmation

The confirmation packet contains the tChannelInfo data structure which is defined as a union of
multiple structures. To be able to us the data, the first element of any union structure defines the
channel type. This type must be evaluated before the corresponding structure can be used to
evaluate the content of the structure.

Variable Type Value / Range Description
ulLen uint32_t

16
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E35 HIL_CHANNEL_INFORMATION_BLOCK_CNF
Data
tChannelInfo Structure Channel Information Block

See netX Dual-Port Memory Interface Manual for more details.
Table 20: HIL_READ_CHNL_INFO_BLOCK_CNF_T – Channel Information Block confirmation

Packet structure reference
/* READ CHANNEL INFORMATION BLOCK CONFIRMATION */
#define HIL_CHANNEL_INFORMATION_BLOCK_CNF HIL_CHANNEL_INFORMATION_BLOCK_REQ+1

typedef union HIL_DPM_CHANNEL_INFO_BLOCKtag
{
 HIL_DPM_SYSTEM_CHANNEL_INFO_T tSystem;
 HIL_DPM _HANDSHAKE_CHANNEL_INFO_T tHandshake;
 HIL_DPM _COMMUNICATION_CHANNEL_INFO_T tCom;
 HIL_DPM _APPLICATION_CHANNEL_INFO_T tApp;
} HIL_DPM_CHANNEL_INFO_BLOCK_T;

typedef struct HIL_READ_CHNL_INFO_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_CHANNEL_INFO_BLOCK_T tChannelInfo; /* channel info block */
} HIL_READ_CHNL_INFO_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_CHNL_INFO_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_CHNL_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_CHNL_INFO_BLOCK_CNF_T;

System services 29/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Example how to evaluate the structure
 uint32_t ulBlockID
 HIL_DPM_CHANNEL_INFO_BLOCK_T* ptChannel;

 /* Iterate over all block definitions, start with channel 0 information */
 ptChannel = &tChannelInfo

 /*---*/
 /* Evaluate the channel information blockt */
 /*---*/
 for(ulBlockID = 0 ulBlockID < HIL_DPM_MAX_SUPPORTED_CHANNELS; ++ulBlockID)
 {
 /* Check Block types */
 switch(ptChannel->tSystem.bChannelType))
 {
 case HIL_CHANNEL_TYPE_COMMUNICATION:
 {
 /* This is a communication channel, read an information */
 uint16_t usActualProtocolClass;
 usActualProtocolClass = ChannelInfo->tCom.usProtocolClass;
 }
 break;

 case HIL_CHANNEL_TYPE_APPLICATION:
 /* This is an application channel */
 break;

 case HIL_CHANNEL_TYPE_HANDSHAKE:
 /* This is the handshake channel containing the handshake registers */
 break;

 case HIL_CHANNEL_TYPE_SYSTEM:
 /* This is the system channel */
 break;

 case HIL_CHANNEL_TYPE_UNDEFINED:
 case HIL_CHANNEL_TYPE_RESERVED:
 default:
 /* Do not process these types */
 break;

 } /* end switch */
 ++ptChannel; /* address next infromation from the channel info block */

 } /* end for loop */

System services 30/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.6.3 Read System Control Block

System Control Block request

This packet is used to request the System Control Block
(HIL_DPM_SYSTEM_CONTROL_BLOCK_T).

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001E36 HIL_SYSTEM_CONTROL_BLOCK_REQ

Table 21: HIL_READ_SYS_CNTRL_BLOCK_REQ_T – System Control Block request

Packet structure reference
/* READ SYSTEM CONTROL BLOCK REQUEST */
#define HIL_SYSTEM_CONTROL_BLOCK_REQ 0x00001E36

typedef struct HIL_READ_SYS_CNTRL_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_READ_SYS_CNTRL_BLOCK_REQ_T;

System Control Block confirmation

The following packet is returned by the firmware.

Variable Type Value / Range Description
ulLen uint32_t

8
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E37 HIL_SYSTEM_CONTROL_BLOCK_CNF
Data
tSystem
Control

Structure System Control Block
See netX Dual-Port Memory Interface Manual for more details.

Table 22: HIL_READ_SYS_CNTRL_BLOCK_CNF_T – System Control Block confirmation

Packet structure reference
/* READ SYSTEM CONTROL BLOCK CONFIRMATION */
#define HIL_SYSTEM_CONTROL_BLOCK_CNF HIL_SYSTEM_CONTROL_BLOCK_REQ+1

typedef struct HIL_READ_SYS_CNTRL_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_SYSTEM_CONTROL_BLOCK_T tSystemControl;
} HIL_READ_SYS_CNTRL_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_SYS_CNTRL_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_SYS_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_SYS_CNTRL_BLOCK_CNF_T;

System services 31/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.6.4 Read System Status Block

System Status Block request

This packet is used to request the System Status Block (HIL_DPM_SYSTEM_STATUS_BLOCK_T)

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001E38 HIL_SYSTEM_STATUS_BLOCK_REQ

Table 23: HIL_READ_SYS_STATUS_BLOCK_REQ_T – System Status Block request

Packet structure reference
/* READ SYSTEM STATUS BLOCK REQUEST */
#define HIL_SYSTEM_STATUS_BLOCK_REQ 0x00001E38

typedef struct HIL_READ_SYS_STATUS_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_READ_SYS_STATUS_BLOCK_REQ_T;

System Status Block confirmation

The following packet is returned by the firmware.

Variable Type Value / Range Description
ulLen uint32_t

64
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E39 HIL_SYSTEM_STATUS_BLOCK_CNF
Data
tSystemState Structure System Status Block

See netX Dual-Port Memory Interface Manual for more details.
Table 24: HIL_READ_SYS_STATUS_BLOCK_CNF_T – System Status Block confirmation

Packet structure reference
/* READ SYSTEM STATUS BLOCK CONFIRMATION */
#define HIL_SYSTEM_STATUS_BLOCK_CNF HIL_SYSTEM_STATUS_BLOCK_REQ+1

typedef struct HIL_READ_SYS_STATUS_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_SYSTEM_STATUS_BLOCK_T tSystemState;
} HIL_READ_SYS_STATUS_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_SYS_STATUS_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_SYS_STATUS_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_SYS_STATUS_BLOCK_CNF_T;

System services 32/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7 Files and folders
A standard netX firmware contains

 either a file system or

 a storage mechanism

to store firmware, configuration and user files. To be able to access these files, the following
services are offered.

Note The file system which is used in the netX firmware is FAT based and supports only file
names in the "8.3" format.

Note File download / upload can be handled via the system mailbox or via a channel
mailbox. In both cases, the destination identifier has to be ulDest =
HIL_SYSTEM_CHANNEL. The difference between the system mailbox and a
communication channel mailbox is just the size of the packet length which can be
transferred.

The netX firmware acknowledges each of the packets and may return an error code in the
confirmation, if a failure occurs.

A special handling is done for the firmware file (.NXI or .NAI) or the firmware update file
(FWUPDATE.ZIP) downloaded on PORT_0. The file is stored in an update area. This file will not be
visible in PORT_0 when using the DIRLIST request. The file stored in the update area is used for
the update process later.

The currently installed firmware files are always shown in PORT_0 with the name
“FIRMWARE.<extension>” (extension: e.g. NXI).

These files are handled differently then ordinary files. While these are shown in PORT_0 when
using the HIL_DIRLIST_REQ, they cannot be deleted using the HIL_FILE_DELETE_REQ nor
renamed using the HIL_FILE_RENAME_REQ.

In case, no file system is available, file and folder services will work on the Flash directly. This
means, that the specified paths in the request will be ignored. Firmware downloads/uploads will
use the location defined in the Flash Layout Table. Directory listenings will always use the
locations defined in the Flash Layout Table.

System services 33/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.1 List Directories and Files from File System
Directories and files in the file system of netX can be listed by the command outlined below. The
default file system layout is shown below.

File System Layout

Volume Directory Description
root System unused / internal use

PORT_0 Communication Channel 0
PORT_1 Communication Channel 1
PORT_2 Communication Channel 2
PORT_3 Communication Channel 3

Note: The installed firmware will always be shown in the sub-directory of Port 0.

Directory List request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 6 + n sizeof(HIL_DIR_LIST_REQ_DATA_T) + strlen("DirName")+1

Remark: 0 can be used for the second, third, etc. packet.
ulCmd uint32_t 0x00001E70 HIL_DIR_LIST_REQ
ulExt uint32_t 0x00,

0xC0
0x00: for the first packet.
0xC0: for the next packets.

Data
ulChannelNo uint32_t

0 … 3
0xFFFFFFFF

Channel Number
Communication Channel 0 … 3
System Channel

usDirName
Length

uint16_t
n

Name Length
Length of the Directory Name (in Bytes)
strlen("DirName")+1

 uint8_t
ASCII

Directory Name
ASCII string, zero terminated
e.g. "\\PORT_0", "\", etc.

Table 25: HIL_DIR_LIST_REQ_T – Directory List request

Packet structure reference
/* DIRECTORY LIST REQUEST */
#define HIL_DIR_LIST_REQ 0x00001E70

/* Channel Number */
#define HIL_COMM_CHANNEL_0 0x00000000
#define HIL_COMM_CHANNEL_1 0x00000001
#define HIL_COMM_CHANNEL_2 0x00000002
#define HIL_COMM_CHANNEL_3 0x00000003

System services 34/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

typedef struct HIL_DIR_LIST_REQ_DATA_Ttag
{
 uint32_t ulChannelNo; /* 0 = channel 0 ... 3 = channel 3 */
 /* 0xFFFFFFFF = system, see HIL_FILE_xxxx */
 uint16_t usDirNameLength; /* length of NULL terminated string */
 /* a NULL-terminated name string will follow here */
} HIL_DIR_LIST_REQ_DATA_T;

typedef struct HIL_DIR_LIST_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DIR_LIST_REQ_DATA_T tData; /* packet data */
} HIL_DIR_LIST_REQ_T;

Directory List confirmation

Variable Type Value / Range Description
ulLen uint32_t

24
0

0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
If ulSta = SUCCESS_HIL_OK and ulExt = 0x40 (last
packet)
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E71 HIL_DIR_LIST_CNF
ulExt uint32_t 0x80,

0xC0,
0x40

0x80 for the first packet.
0xC0 for the following packets.
0x40 for the last packet.

Data
szName[16] uint8_t File Name
ulFileSize uint32_t m File Size in Bytes
bFileType uint8_t

0x00000001
0x00000002

File Type
HIL_DIR_LIST_CNF_FILE_TYPE_DIRECTORY
HIL_DIR_LIST_CNF_FILE_TYPE_FILE

bReserved uint8_t 0 Reserved, unused
usReserved2 uint16_t 0 Reserved, unused

Table 26: HIL_DIR_LIST_CBF_T – Directory List confirmation

Packet structure reference
/* DIRECTORY LIST CONFIRMATION */
#define HIL_DIR_LIST_CNF HIL_DIR_LIST_REQ+1

/* TYPE: DIRECTORY */
#define HIL_DIR_LIST_CNF_FILE_TYPE_DIRECTORY 0x00000001

/* TYPE: FILE */
#define HIL_DIR_LIST_CNF_FILE_TYPE_FILE 0x00000002

typedef struct HIL_DIR_LIST_CNF_DATA_Ttag
{
 uint8_t szName[16]; /* file name */
 uint32_t ulFileSize; /* file size */
 uint8_t bFileType; /* file type */
 uint8_t bReserved; /* reserved, set to 0 */
 uint16_t bReserved2 /* reserved, set to 0 */
} HIL_DIR_LIST_CNF_DATA_T;

typedef struct HIL_DIR_LIST_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DIR_LIST_CNF_DATA_T tData; /* packet data */
} HIL_DIR_LIST_CNF_T;

System services 35/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.2 Downloading / Uploading Files
Any download / upload of files to/from the netX firmware is handled via netX packets as described
below. The netX operating system creates a file system where the files are stored.

To download a file, the user application has to split the file into smaller pieces that fit into a packet
data area and send them to the netX. Similar handling is necessary for a file upload, where a file
can only be requested in pieces which have to be assembled by the user application.

For file uploads / downloads (e.g. firmware or configuration files) where the data does not fit into a
single packet, the packet header field ulExt in conjunction with the packet identifier ulID has to
be used to control packet sequence handling, indicating the first, last and sequenced packets.

Note: The user application must send/request files in the order of its original sequence. The
ulId field in the packet holds a sequence number. It starts with 0 and is incremented
for each new request packet.
Sequence numbers shall not be skipped or used twice because the netX firmware
cannot re-assemble file data received out of order.

Example:

Single Packet Upload/Download Two Packet Upload/Download

Definition ulId ulExt Definition ulId ulExt

HIL_FILE_DOWNLOAD_REQ 0 HIL_PACKET_SEQ_NONE HIL_FILE_DOWNLOAD_REQ 0 HIL_PACKET_SEQ_NONE

HIL_FILE_DOWNLOAD_DATA_REQ 1 HIL_PACKET_SEQ_NONE HIL_FILE_DOWNLOAD_DATA_REQ 1 HIL_PACKET_SEQ_FIRST

 HIL_FILE_DOWNLOAD_DATA_REQ 2 HIL_PACKET_SEQ_LAST

Multi Packet Upload/Download

Definition ulId ulExt

HIL_FILE_DOWNLOAD_REQ 0 HIL_PACKET_SEQ_NONE

HIL_FILE_DOWNLOAD_DATA_REQ 1 HIL_PACKET_SEQ_FIRST

......

HIL_FILE_DOWNLOAD_DATA_REQ ulId +1 HIL_PACKET_SEQ_MIDDLE

HIL_FILE_DOWNLOAD_DATA_REQ ulId +1 HIL_PACKET_SEQ_MIDDLE

......

HIL_FILE_DOWNLOAD_DATA_REQ ulId +1 HIL_PACKET_SEQ_LAST

System services 36/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.2.1 File Download

The download procedure starts with a File Download Request packet. The user application
provides at least the file length and file name.

The system responds with the maximum packet data size, which can be used in the subsequent
File Download Data packets. The application has to transfer the entire file by sending as many
data packets as necessary.

Each packet will be confirmed by the firmware. The download is finished with the last packet.

Flowchart

File / Configuration Download

Request
successfull ?

Done

NO
Transfer

 successfull?

NO

Transfer packet to hardware and wait
for answer

Packet extension
HIL_SEQ_MIDDLE

Last packet?

Packet extension
HIL_SEQ_LAST

YES

NO

Transfer packet to hardware and wait
for answer

Create download request command with
packet extension HIL_SEQ_NONE

NO

YES

Transfer packet to hardware
and wait for answer

Create download abort command

Create data download packet

Check how many packets to send. Set
extension to HIL_SEQ_NONE if only one

packet. Else set to HIL_SEQ_FIRST.

Transfer done?

YES

Figure 1: Flowchart File Download

Note: If an error occurs during the download, the process must be canceled by sending a File
Download Abort command.

System services 37/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

File Download request

The packet below is the first request to be sent to the netX firmware to start a file download. The
application provides the length of the file and its name in the request packet.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_SYSTEM_CHANNEL
ulLen uint32_t 18 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E62 HIL_FILE_DOWNLOAD_REQ
ulId uint32_t 0 Packet Identifer
ulExt uint32_t

0x00000000
Extension
HIL_PACKET_SEQ_NONE

Data
ulXferType uint32_t

0x00000001
Download Transfer Type
HIL_FILE_XFER_FILE

ulMaxBlockSize uint32_t
1 … m

Max Block Size
Maximum Size of Block per Packet

ulFileLength uint32_t n File size to be downloaded in bytes
ulChannelNo uint32_t

0 … 3
0xFFFFFFFF

Destination Channel Number
Communication Channel 0 … 3
System Channel

usFileNameLength uint16_t
n

Length of Name
Length of the following file name (in Bytes)

(file name) uint8_t
ASCII

File Name
ASCII string, zero terminated

Table 27: HIL_FILE_DOWNLOAD_REQ_T – File Download request

Packet structure reference
/* FILE DOWNLOAD REQUEST */
#define HIL_FILE_DOWNLOAD_REQ 0x00001E62

/* TRANSFER FILE */
#define HIL_FILE_XFER_FILE 0x00000001

/* TRANSFER INTO FILE SYSTEM */
#define HIL_FILE_XFER_FILESYSTEM 0x00000001

/* TRANSFER MODULE */
#define HIL_FILE_XFER_MODULE 0x00000002

/* Channel Number */
#define HIL_SYSTEM_CHANNEL 0xFFFFFFFF
#define HIL_COMM_CHANNEL_0 0x00000000
#define HIL_COMM_CHANNEL_1 0x00000001
#define HIL_COMM_CHANNEL_2 0x00000002
#define HIL_COMM_CHANNEL_3 0x00000003

typedef struct HIL_FILE_DOWNLOAD_REQ_DATA_Ttag
{
 uint32_t ulXferType;
 uint32_t ulMaxBlockSize;
 uint32_t ulFileLength;
 uint32_t ulChannelNo;
 uint16_t usFileNameLength;
 /* a NULL-terminated file name follows here */
 /* uint8_t abFileName[]; */
} HIL_FILE_DOWNLOAD_REQ_DATA_T;

System services 38/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

typedef struct HIL_FILE_DOWNLOAD_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_DOWNLOAD_REQ_DATA_T tData; /* packet data */
} HIL_FILE_DOWNLOAD_REQ_T;

File Download confirmation

The netX firmware acknowledges the request with the following confirmation packet. It contains the
size of the data block that can be transferred in one packet.

Variable Type Value / Range Description
ulLen uint32_t

4
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E63 HIL_FILE_DOWNLOAD_CNF
Data
ulMaxBlockSize uint32_t

1 … n
Max Block Size
Maximum Size of Block per Packet

Table 28: HIL_FILE_DOWNLOAD_CNF_T – File Download confirmation

Packet structure reference
/* FILE DOWNLOAD CONFIRMATION */
#define HIL_FILE_DOWNLOAD_CNF HIL_FILE_DOWNLOAD_REQ+1

typedef struct HIL_FILE_DOWNLOAD_CNF_DATA_Ttag
{
 uint32_t ulMaxBlockSize;
} HIL_FILE_DOWNLOAD_CNF_DATA_T;

typedef struct HIL_FILE_DOWNLOAD_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_DOWNLOAD_CNF_DATA_T tData; /* packet data */
} HIL_FILE_DOWNLOAD_CNF_T;

System services 39/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.2.2 File Download Data

This packet is used to transfer a block of data to the netX operating system to be stored in the file
system. The term data block is used to describe a portion of a file. The data block in the packet is
identified by a block or sequence number and is secured through a continuous CRC32 checksum.

Note: If the download fails, the operating system returns an error code in ulSta. The user
application then has to send an Abort File Download Request packet (see page 41)
and start over.

The block or sequence number ulBlockNo starts with zero for the first data packet and is
incremented by one for each following packet. The checksum in ulChksum is calculated as a
CRC32 polynomial. It is calculated continuously over all data packets that were sent already. A
sample on how to calculate the checksum is included in this manual.

File Download Data request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_SYSTEM_CHANNEL
ulLen uint32_t 8 + n Packet Data Length (in Bytes)
ulId uint32_t id Packet Identifier

Note: Should be incremented for each request:
ulId (this request) = ulId (previous request) + 1

ulCmd uint32_t 0x00001E64 HIL_FILE_DOWNLOAD_DATA_REQ
ulExt uint32_t

0x00000000
0x00000080
0x000000C0
0x00000040

Extension
HIL_PACKET_SEQ_NONE (if data fits into one packet)
HIL_PACKET_SEQ_FIRST
HIL_PACKET_SEQ_MIDDLE
HIL_PACKET_SEQ_LAST

Data
ulBlockNo uint32_t

0 ... m
Block Number
Block or Sequence Number

ulChksum uint32_t
S

Checksum
CRC32 Polynomial

 uint8_t 0 … 0xFF File Data Block (length given in ulLen)
Table 29: HIL_FILE_DOWNLOAD_DATA_REQ_T – File Download Data request

Packet structure reference
/* FILE DOWNLOAD DATA REQUEST*/
#define HIL_FILE_DOWNLOAD_DATA_REQ 0x00001E64

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000
#define HIL_PACKET_SEQ_FIRST 0x00000080
#define HIL_PACKET_SEQ_MIDDLE 0x000000C0
#define HIL_PACKET_SEQ_LAST 0x00000040

typedef struct HIL_FILE_DOWNLOAD_DATA_REQ_DATA_Ttag
{
 uint32_t ulBlockNo; /* block number */
 uint32_t ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* uint8_t abData[]; */
} HIL_FILE_DOWNLOAD_DATA_REQ_DATA_T;

System services 40/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

typedef struct HIL_FILE_DOWNLOAD_DATA_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_DOWNLOAD_DATA_REQ_DATA_T tData; /* packet data */
} HIL_FILE_DOWNLOAD_DATA_REQ_T;

File Download Data confirmation

The following confirmation packet is returned. It contains the expected CRC32 checksum of the
data block. If the ulSta field is not SUCCESS_HIL_OK, the expected checksum can be compared
to the one sent.

Variable Type Value / Range Description
ulLen uint32_t

0
4

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
If ulSta != SUCCESS_HIL_OK

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E65 HIL_FILE_DOWNLOAD_DATA_CNF
Data
ulExpectedCrc32 uint32_t

S
Checksum
Expected CRC32 polynomial

Table 30: HIL_FILE_DOWNLOAD_DATA_CNF_T – File Download Data confirmation

Packet structure reference
/* FILE DOWNLOAD DATA CONFIRMATION */
#define HIL_FILE_DOWNLOAD_DATA_CNF HIL_FILE_DOWNLOAD_DATA_REQ+1

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000

typedef struct HIL_FILE_DOWNLOAD_DATA_CNF_DATA_Ttag
{
 uint32_t ulExpectedCrc32; /* expected CRC-32 checksum */
} HIL_FILE_DOWNLOAD_DATA_CNF_DATA_T;

typedef struct HIL_FILE_DOWNLOAD_DATA_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_DOWNLOAD_DATA_CNF_DATA_T tData; /* packet data */
} HIL_FILE_DOWNLOAD_DATA_CNF_T;

System services 41/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.2.3 File Download Abort

If an error occurs during the download of a file (ulSta not equal to SUCCESS_HIL_OK), the user
application has to abort the download procedure by sending the File Download Abort command.

This command can also be used by an application to abort the download procedure at any time.

File Download Abort request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_SYSTEM_CHANNEL
ulCmd uint32_t 0x00001E66 HIL_FILE_DOWNLOAD_ABORT_REQ
ulId uint32_t ulId+1 Packet Identifer

Note: Should be incremented for each request

Table 31: HIL_FILE_DOWNLOAD_ABORT_REQ_T – File Download Abort request

Packet structure reference
/* ABORT DOWNLOAD REQUEST */
#define HIL_FILE_DOWNLOAD_ABORT_REQ 0x00001E66

typedef struct HIL_FILE_DOWNLOAD_ABORT_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_DOWNLOAD_ABORT_REQ_T;

File Download Abort confirmation

The netX operating system returns the following confirmation packet, indicating that the download
was aborted.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E67 HIL_FILE_DOWNLOAD_ABORT_CNF

Table 32: HIL_FILE_DOWNLOAD_ABORT_CNF_T – File Download Abort confirmation

Packet structure reference
/* ABORT DOWNLOAD REQUEST */
#define HIL_FILE_DOWNLOAD_ABORT_CNF HIL_FILE_DOWNLOAD_ABORT_REQ+1

typedef struct HIL_FILE_DOWNLOAD_ABORT_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_DOWNLOAD_ABORT_CNF_T;

System services 42/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.3 Uploading Files from netX
Just as the download process, the upload process is handled via packets. The file to be uploaded
is selected by the file name. During the File Upload request, the file name is transferred to the netX
operating system. If the requested file exists, the netX operating system returns all necessary file
information in the response.

The host application creates File Upload Data request packets, which will be acknowledged by the
netX operating system with the corresponding confirmation packets holding portions of the file
data. The application has to continue sending File Upload Data request packets until the entire file
is transferred. Receiving the last confirmation packet finishes the upload process.

Flowchart

File / Configuration Upload

Request
successfull ?

Done

NO
Transfer

 successfull?

NO

YES

Transfer packet to hardware and wait for
answer

YES

Set extension to
HIL_SEQ_MIDDLE

Last packet?

Set extension to
HIL_SEQ_LAST

Transfer RCX packet to hardware and
wait for answer

Create upload request command with packet
extension RCX_SEQ_NONE

YesYES

Transfer packet to
hardware and wait for

answer

Create upload abort command

Check how many packets to be requested and set
extension to HIL_SEQ_NONE, if only one packet.

Else set to HIL_SEQ_FIRST.

Create upload data request packet

Transfer done? NO NO

Figure 2: Flowchart File Upload

System services 43/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.3.1 File Upload

Note: If an error occurs during a file upload, the process must be canceled by sending a File
Upload Abort command.

File Upload request

The file upload request is the first request to be sent to the system. The application provides the
length of the file and its name in the request packet.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 14 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E60 HIL_FILE_UPLOAD_REQ
ulId uint32_t 0 Packet Identifier
ulExt uint32_t

0x00000000
Extension
HIL_PACKET_SEQ_NONE

Data
ulXferType uint32_t

0x00000001
Transfer Type:
HIL_FILE_XFER_FILE

ulMaxBlockSize uint32_t
1 … m

Max Block Size
Maximum Size of Block per Packet

ulChannelNo uint32_t
0 … 3
0xFFFFFFFF

Channel Number
Communication Channel 0 … 3
System Channel

usFileNameLength uint16_t
n

Length of Name
Length of Following File Name (in Bytes)

 uint8_t
ASCII

File Name
ASCII string, zero terminated

Table 33: HIL_FILE_UPLOAD_REQ_T – File Upload request

Packet structure reference
/* FILE UPLOAD COMMAND */
#define HIL_FILE_UPLOAD_REQ 0x00001E60

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000

/* TRANSFER TYPE */
#define HIL_FILE_XFER_FILE 0x00000001

/* CHANNEL Number */
#define HIL_SYSTEM_CHANNEL 0xFFFFFFFF
#define HIL_COMM_CHANNEL_0 0x00000000
#define HIL_COMM_CHANNEL_1 0x00000001
#define HIL_COMM_CHANNEL_2 0x00000002
#define HIL_COMM_CHANNEL_3 0x00000003

typedef struct HIL_FILE_UPLOAD_REQ_DATA_Ttag
{
 uint32_t ulXferType; /* transfer type */
 uint32_t ulMaxBlockSize; /* block size */
 uint32_t ulChannelNo; /* channel number */
 uint16_t usFileNameLength; /* length of file name */
 /* a NULL-terminated file name follows here */
 /* uint8_t abFileName[]; file name */
} HIL_FILE_UPLOAD_REQ_DATA_T;

System services 44/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

typedef struct HIL_FILE_UPLOAD_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_UPLOAD_REQ_DATA_T tData; /* packet data */
} HIL_FILE_UPLOAD_REQ_T;

File Upload confirmation

The netX system acknowledges the request with the following confirmation packet.

Variable Type Value / Range Description
ulLen uint32_t

8
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E61 HIL_FILE_UPLOAD_CNF_T
Data
ulMaxBlockSize uint32_t n

Max Block Size
Maximum Size of Block per Packet

ulFileLength uint32_t n

File Length
Total File Length (in Bytes)

Table 34: HIL_FILE_UPLOAD_CNF_T – File Upload confirmation

Packet structure reference
/* FILE UPLOAD CONFIRMATION */
#define HIL_FILE_UPLOAD_CNF HIL_FILE_UPLOAD_REQ+1

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000

typedef struct HIL_FILE_UPLOAD_CNF_DATA_Ttag
{
 uint32_t ulMaxBlockSize; /* maximum block size possible */
 uint32_t ulFileLength; /* file size to transfer */
} HIL_FILE_UPLOAD_CNF_DATA_T;

typedef struct HIL_FILE_UPLOAD_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_UPLOAD_CNF_DATA_T tData; /* packet data */
} HIL_FILE_UPLOAD_CNF_T;

System services 45/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.3.2 File Upload Data

This packet is used to transfer a block of data from the netX system to the user application. The
term data block is used to describe a portion of a file. The data block in the packet is identified by a
block or sequence number and is secured through a continuous CRC32 checksum.

File Upload Data request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001E6E HIL_FILE_UPLOAD_DATA_REQ
ulId uint32_t ulId+1 Packet Identifer

Note: Should be incremented for each request
ulExt uint32_t

0x00000000
0x00000080
0x000000C0
0x00000040

Extension
HIL_PACKET_SEQ_NONE (if data fits into one packet)
HIL_PACKET_SEQ_FIRST
HIL_PACKET_SEQ_MIDDLE
HIL_PACKET_SEQ_LAST

Table 35: HIL_FILE_UPLOAD_DATA_REQ_T – File Upload Data request

Packet structure reference
/* FILE UPLOAD DATA REQUEST */
#define HIL_FILE_UPLOAD_DATA_REQ 0x00001E6E

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000
#define HIL_PACKET_SEQ_FIRST 0x00000080
#define HIL_PACKET_SEQ_MIDDLE 0x000000C0
#define HIL_PACKET_SEQ_LAST 0x00000040

typedef struct HIL_FILE_UPLOAD_DATA_REQ_Ttag
{
 PACKET_HEADER tHead; /* packet header */
} HIL_FILE_UPLOAD_DATA_REQ_T;

System services 46/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

File Upload Data confirmation

The confirmation contains the block number and the expected CRC32 checksum of the data block.

Variable Type Value / Range Description
ulLen uint32_t

8 + n
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E6F HIL_FILE_UPLAOD_DATA_CNF
Data
ulBlockNo uint32_t

0 … m
Block Number
Block or Sequence Number

ulChksum uint32_t
S

Checksum
CRC32 Polynomial

 uint8_t File Data Block (Size is n given in ulLen)

Table 36: HIL_FILE_UPLOAD_DATA_CNF_T – File Upload Data confirmation

Packet structure reference
/* FILE DATA UPLOAD CONFIRMATION */
#define HIL_FILE_UPLAOD_DATA_CNF HIL_FILE_UPLOAD_DATA_REQ +1

/* PACKET SEQUENCE */
#define HIL_PACKET_SEQ_NONE 0x00000000

typedef struct HIL_FILE_UPLOAD_DATA_CNF_DATA_Ttag
{
 uint32_t ulBlockNo; /* block number starting from 0 */
 uint32_t ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* uint8_t abData[]; */
} HIL_FILE_UPLOAD_DATA_CNF_DATA_T;

typedef struct HIL_FILE_UPLOAD_DATA_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_UPLOAD_DATA_CNF_DATA_T tData; /* packet data */
} HIL_FILE_UPLOAD_DATA_CNF_T;

Block Number ulBlockNo

The block number ulBlockNo starts with zero for the first data packet and is incremented by one for
every following packet. The netX operating system sends the file in the order of its original
sequence. Sequence numbers are not skipped or used twice.

Checksum ulChksum

The checksum ulChksum is calculated as a CRC32 polynomial. It is calculated continuously over
all data packets that were sent already. A sample to calculate the checksum is included in the
toolkit for netX based products.

System services 47/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.3.3 File Upload Abort

In case of an error (ulSta not equal to SUCCESS_HIL_OK) during an upload, the application has
to cancel the upload procedure by sending the abort command.

If necessary, the application can use the command abort an upload procedure at any time.

File Upload Abort request

Structure Information: HIL_FILE_UPLOAD_ABORT_REQ_T

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001E5E HIL_FILE_UPLOAD_ABORT_REQ
ulId uint32_t ulId+1 Packet Identifer

Note: Should be incremented for each request

Table 37: HIL_FILE_UPLOAD_ABORT_REQ_T – File Upload Abort request

Packet structure reference
/* FILE ABORT UPLOAD REQUEST */
#define HIL_FILE_UPLOAD_ABORT_REQ 0x00001E5E

typedef struct HIL_FILE_UPLOAD_ABORT_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_UPLOAD_ABORT_REQ_T;

File Upload Abort confirmation

The system acknowledges an abort command with the following confirmation packet.

Structure Information: HIL_FILE_UPLOAD_ABORT_CNF_T

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E5F HIL_FILE_UPLOAD_ABORT_CNF

Table 38: HIL_FILE_UPLOAD_ABORT_CNF_T – File Upload Abort confirmation

Packet structure reference
/* FILE ABORT UPLOAD CONFIRMATION */
#define HIL_FILE_UPLOAD_ABORT_CNF HIL_FILE_UPLOAD_ABORT_REQ+1

typedef struct HIL_FILE_UPLOAD_ABORT_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_UPLOAD_ABORT_CNF_T;

System services 48/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.4 Delete a File
If the target hardware supports a FLASH/RAM based file system, all downloaded files like firmware
(FLASH only), configuration and user files are stored in the file system.

Note: Installed firmware files of PORT_0 cannot be deleted as these are not stored in the file
system.

The following service can be used to delete files from the target files system.

File Delete request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 6 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E6A HIL_FILE_DELETE_REQ
Data
ulChannelNo uint32_t

0 … 3
0xFFFFFFFF

Channel Number
Communication Channel 0 … 3
System Channel

usFileName
Length

uint16_t
n

Length of Name
Length of the Following File Name (in Bytes)

 uint8_t
ASCII

File Name
ASCII string, zero terminated

Table 39: HIL_FILE_DELETE_REQ_T – File Delete request

Packet structure reference
/* FILE DELETE REQUEST */
#define HIL_FILE_DELETE_REQ 0x00001E6A

/* Channel Number */
#define HIL_SYSTEM_CHANNEL 0xFFFFFFFF
#define HIL_COMM_CHANNEL_0 0x00000000
#define HIL_COMM_CHANNEL_1 0x00000001
#define HIL_COMM_CHANNEL_2 0x00000002
#define HIL_COMM_CHANNEL_3 0x00000003

typedef struct HIL_FILE_DELETE_REQ_DATA_Ttag
{
 uint32_t ulChannelNo; /* 0 = channel 0 ... 3 = channel 3 */
 /* 0xFFFFFFFF = system, see HIL_FILE_xxxx */
 uint16_t usFileNameLength; /* length of NULL-terminated file name */
 /* a NULL-terminated file name will follow here */
} HIL_FILE_DELETE_REQ_DATA_T;

typedef struct HIL_FILE_DELETE_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_DELETE_REQ_DATA_T tData; /* packet data */
} HIL_FILE_DELETE_REQ_T;

System services 49/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

File Delete confirmation

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E6B HIL_FILE_DELETE_CNF

Table 40: HIL_FILE_DELETE_CNF_T – File Delete confirmation

Packet structure reference
/* FILE DELETE REQUEST */
#define HIL_FILE_DELETE_CNF HIL_FILE_DELETE_REQ+1

typedef struct HIL_FILE_DELETE_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_DELETE_CNF_T;

System services 50/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.5 Rename a File
This service can be used to rename files in the target file system.

Note: Installed firmware files of PORT_0 cannot be renamed as these are not stored in the file
system.

File Rename request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 8+m+n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E7C HIL_FILE_RENAME_REQ
Data
ulChannelNo uint32_t

0 … 3
4 … 5
0xFFFFFFFF

Channel Number
Communication Channel 0 … 3
Application Channel 0 … 1
System Channel

usOldNameLength uint16_t m Length of Old File Name
Length of following NULL terminated old File Name (in Bytes)

usNewNameLength uint16_t n Length of New File Name
Length of following NULL terminated new File Name (in Bytes)

 uint8_t
ASCII

Old File Name
ASCII string, zero terminated

 uint8_t
ASCII

New File Name
ASCII string, zero terminated

Table 41: HIL_FILE_RENAME_REQ_T – File Rename request

Packet structure reference
/* FILE RENAME REQUEST */
#define HIL_FILE_RENAME_REQ 0x00001E7C

typedef struct HIL_FILE_RENAME_REQ_DATA_Ttag
{
 uint32_t ulChannelNo; /* 0..3 = Channel 0..3, 0xFFFFFFFF = System */
 uint16_t usOldNameLength; /* length of NUL-terminated old file name that will follow
*/
 uint16_t usNewNameLength; /* length of NUL-terminated new file name that will follow
*/

 /* old NUL-terminated file name will follow here */
 /* new NUL-terminated file name will follow here */
} HIL_FILE_RENAME_REQ_DATA_T;

typedef struct HIL_FILE_RENAME_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_RENAME_REQ_DATA_T tData; /* packet data */
} HIL_FILE_RENAME_REQ_T;

System services 51/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

File Rename confirmation

Variable Type Value / Range Description
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E7D HIL_FILE_RENAME_CNF

Table 42: HIL_FILE_RENAME_CNF_T – File Rename confirmation

Packet structure reference
/* FILE RENAME CONFIRMATION */
#define HIL_FILE_RENAME_CNF HIL_FILE_RENAME_REQ+1

typedef struct HIL_FILE_RENAME_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_FILE_RENAME_CNF_T;

System services 52/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.6 Creating a CRC32 Checksum
This is an example which shows the generation of a CRC32 checksum, necessary for certain file
functions like a file download (such an example can also be found in the internet).
/***/
/*! Create a CRC32 value from the given buffer data
* \param ulCRC continued CRC32 value
* \param pabBuffer buffer to create the CRC from
* \param ulLength buffer length
* \return CRC32 value */
/***/
static unsigned long CreateCRC32(unsigned long ulCRC,
 unsigned char* pabBuffer,
 unsigned long ulLength)
{
 if((0 == pabBuffer) || (0 == ulLength))
 {
 return ulCRC;
 }
 ulCRC = ulCRC ^ 0xffffffff;
 for(;ulLength > 0; --ulLength)
 {
 ulCRC = (Crc32Table[((ulCRC) ^ (*(pabBuffer++))) & 0xff] ^ ((ulCRC) >> 8));
 }
 return(ulCRC ^ 0xffffffff);
}

/***/
/*! CRC 32 lookup table */
/***/
static unsigned long Crc32Table[256]=
{
 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL,
 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL,
 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL,
 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL,
 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL,
 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL,
 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL,
 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL,
 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL,
 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL,
 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL,
 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL,
 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL,
 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL,
 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL,
 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL,
 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL,
 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL,
 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL,
 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL,
 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL,
 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL,
 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL,
 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL,
 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL,
 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL,
 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL,
 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL,
 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL,
 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL,
 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL,
 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL,
 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL,
 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL,
 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL,
 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL,
 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL
};

System services 53/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.7 Read MD5 File Checksum
This function can be used to read the MD5 checksum of a given file. The checksum will be
generated during the request over the actual file data.

File Get MD5 request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 6 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E68 HIL_FILE_GET_MD5_REQ
Data
ulChannelNo uint32_t

0 … 3
0xFFFFFFFF

Channel Number
Communication Channel
System Channel

usFileName
Length

uint16_t
n

Length of Name
Length of the Following File Name (in Bytes)

 uint8_t
ASCII

File Name
ASCII string, zero terminated

Table 43: HIL_FILE_GET_MD5_REQ_T – File Get MD5 request

Packet structure reference
/* REQUEST MD5 FILE CHECKSUM REQUEST */
#define HIL_FILE_GET_MD5_REQ 0x00001E68

typedef struct HIL_FILE_GET_MD5_REQ_DATA_Ttag
{
 uint32_t ulChannelNo; /* 0 = Channel 0 ... 3 = Channel 3, */
 /* 0xFFFFFFFF = System, see HIL_FILE_xxxx */
 uint16_t usFileNameLength; /* length of NULL-terminated file name */

 /* a NULL-terminated file name will follow here */
} HIL_FILE_GET_MD5_REQ_DATA_T;

typedef struct HIL_FILE_GET_MD5_REQ_Ttag
{
 PACKET_HEADER tHead; /* packet header */
 HIL_FILE_GET_MD5_REQ_DATA_T tData; /* packet data */
} HIL_FILE_GET_MD5_REQ_T;

System services 54/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

File Get MD5 confirmation

Variable Type Value / Range Description
ulLen uint32_t

16
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E69 HIL_FILE_GET_MD5_CNF
Data
abMD5[16] uint8_t 0 … 0xFF MD5 checksum

Table 44: HIL_FILE_GET_MD5_CNF_T – File Get MD5 confirmation

Packet structure reference
/* REQUEST MD5 FILE CHECKSUM REQUEST */
#define HIL_FILE_GET_MD5_CNF HIL_FILE_GET_MD5_REQ+1

typedef struct HIL_FILE_GET_MD5_CNF_DATA_Ttag
{
 uint8_t abMD5[16]; /* MD5 checksum */
} HIL_FILE_GET_MD5_CNF_DATA_T;

typedef struct HIL_FILE_GET_MD5_CNFtag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FILE_GET_MD5_CNF_DATA_T tData; /* packet data */
} HIL_FILE_GET_MD5_CNF_T;

System services 55/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.7.8 Read MD5 File Checksum from File Header
System files like the firmware and the configuration database files are containing a MD5 checksum
in their file header. This checksum can be read by using this function.

File Get Header MD5 request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 6+n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E72 HIL_FILE_GET_HEADER_MD5_REQ
Data
ulChannelNo uint32_t

0 … 3
0xFFFFFFFF

Channel Number
Communication Channel
System Channel

usFileName
Length

uint16_t
n

Length of Name
Length of the Following File Name (in Bytes)

 uint8_t
ASCII

File Name
ASCII string, zero terminated

Table 45: HIL_FILE_GET_HEADER_MD5_REQ_T – File Get Header MD5 request

Packet structure reference
/* REQUEST MD5 FILE HEADER CHECKSUM REQUEST */
#define HIL_FILE_GET_HEADER_MD5_REQ 0x00001E72

/* This packet has the same structure, so we are using a typedef here */
typedef HIL_FILE_GET_MD5_REQ_T HIL_FILE_GET_HEADER_MD5_REQ_T

File Get Header MD5 confirmation

Variable Type Value / Range Description
ulLen uint32_t

16
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E73 HIL_FILE_GET_HEADER_MD5_CNF
Data
abMD5[16] uint8_t 0 … 0xFF MD5 checksum

Table 46: HIL_FILE_GET_HEADER_MD5_CNF_T – File Get Header MD5 confirmation

Packet structure reference
/* REQUEST MD5 FILE HEADER CHECKSUM CONFIRMATION */
#define HIL_FILE_GET_HEADER_MD5_CNF HIL_FILE_GET_HEADER_MD5_REQ+1

/* This packet has the same structure, so we are using a typedef here */
typedef HIL_FILE_GET_MD5_CNF_T HIL_FILE_GET_HEADER_MD5_CNF_T

System services 56/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.8 Format the Default Partition
This request can be used to format the default partition of the target file system. This service is
only available for a firmware with file system. A format operation can take some time (depends on
the size of the partition). A confirmation packet will be receive once the format finished or if an error
occurred.

Attention: Formatting the partition will erase all files in the file system.

Format request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 8 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001ED6 HIL_FORMAT_REQ
Data
ulFlags uint32_t

0x00000000
0x00000001

Type of format operation
HIL_FORMAT_REQ_DATA_FLAGS_QUICKFORMAT
HIL_FORMAT_REQ_DATA_FLAGS_FULLFORMAT

ulReserved uint32_t 0 Reserved, unsed
Table 47: HIL_FORMAT_REQ_T – Format request

Packet structure reference
/* FORMAT REQUEST */
#define HIL_FORMAT_REQ 0x00001ED6

#define HIL_FORMAT_REQ_DATA_FLAGS_QUICKFORMAT 0x00000000
#define HIL_FORMAT_REQ_DATA_FLAGS_FULLFORMAT 0x00000001

typedef struct HIL_FORMAT_REQ_DATA_Ttag
{
 uint32_t ulFlags;
 uint32_t ulReserved;
} HIL_FORMAT_REQ_DATA_T;

typedef struct HIL_FORMAT_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FORMAT_REQ_DATA_T tData;
} HIL_FORMAT_REQ_T;

System services 57/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Format confirmation

Variable Type Value / Range Description
ulLen uint32_t

8
Packet Data Length (in Bytes)
Always

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001ED7 HIL_FORMAT_CNF
Data
ulExtended
ErrorInfo

uint32_t Set if full format failed during a verify operation.
Last byte verified at offset ulErrorOffset (if failed during verify
operation).

ulErrorOffset uint32_t Offset the error was encountered on
Table 48: HIL_FORMAT_CNF_T – Format confirmation

Packet structure reference
/* FORMAT CONFIRMATION */
#define HIL_FORMAT_CNF HIL_FORMAT_REQ+1

typedef struct HIL_FORMAT_CNF_DATA_Ttag
{
 /* Valid if format has failed during a full format with an error during
 verification (ulSta = ERR_HIL_VERIFICATION) */
 uint32_t ulExtendedErrorInfo;
 uint32_t ulErrorOffset;
} HIL_FORMAT_CNF_DATA_T;

typedef struct HIL_FORMAT_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_FORMAT_CNF_DATA_T tData;
} HIL_FORMAT_CNF_T;

System services 58/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.9 Determining the DPM Layout
The layout of the dual-port memory (DPM) can be determined by evaluating the content of the
System Channel Information Block.

To obtain the logical layout of a channel, the application has to send a packet to the firmware
through the system block’s mailbox area. The protocol stack replies with one or more messages
containing the description of the channel.

Each memory area of a channel has an offset address and an identifier to indicate the type of area
(e.g. IO process data image, send/receive mailbox, parameter, status or port specific area.)

DPM Get Block Information request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 8 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EF8 HIL_DPM_GET_BLOCK_INFO_REQ
Data
ulAreaIndex uint32_t 0 … 7 Area Index (see below)
ulSubblockIndex uint32_t 0 … 0xFFFFFFFF Sub Block Index (see below)

Table 49: HIL_DPM_GET_BLOCK_INFO_REQ_T – DPM Get Block Information request

Packet structure reference
/* GET BLOCK INFORMATION REQUEST */
#define HIL_DPM_GET_BLOCK_INFO_REQ 0x00001EF8

typedef struct HIL_DPM_GET_BLOCK_INFO_REQ_DATA_Ttag
{
 uint32_t ulAreaIndex; /* area index */
 uint32_t ulSubblockIndex; /* sub block index */
} HIL_DPM_GET_BLOCK_INFO_REQ_DATA_T;

typedef struct HIL_DPM_GET_BLOCK_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DPM_GET_BLOCK_INFO_REQ_DATA_T tData; /* packet data */
} HIL_DPM_GET_BLOCK_INFO_REQ_T;

Area Index ulAreaIndex

This field holds the index of the channel. The system channel is identified by an index number of 0;
the handshake has index 1, the first communication channel has index 2 and so on.

Sub Block Index ulSubblockIndex

The sub block index field identifies each of the blocks that reside in the dual-port memory interface
for the specified communication channel.

System services 59/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

DPM Get Block Information confirmation

The firmware replies with the following message.

Variable Type Value / Range Description
ulLen uint32_t

28
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EF9 HIL_GET_BLOCK_INFO_CNF
Data
ulAreaIndex uint32_t 0, 1, … 7 Area Index (Channel Number)
ulSubblockIndex uint32_t 0 … 0xFFFFFFFF Number of Sub Blocks (see below)
ulType uint32_t 0 … 0x0009 Type of Sub Block (see below)
ulOffset uint32_t 0 … 0xFFFFFFFF Offset of Sub Block within the Area
ulSize uint32_t 0 … 65535 Size of Sub Block (see below)
usFlags uint16_t 0 … 0x0023 Transmission Flags of Sub Block (see below)
usHandshakeMode uint16_t 0 … 0x0004 Handshake Mode (see below)
usHandshakeBit uint16_t 0 … 0x00FF Bit Position in the Handshake Register
usReserved uint16_t 0 Reserved, unused

Table 50: HIL_DPM_GET_BLOCK_INFO_CNF_T – DPM Get Block Information confirmation

Packet structure reference
/* GET BLOCK INFORMATION CONFIRMATION */
#define HIL_DPM_GET_BLOCK_INFO_CNF HIL_DPM_GET_BLOCK_INFO_REQ+1

typedef struct HIL_DPM_GET_BLOCK_INFO_CNF_DATA_Ttag
{
 uint32_t ulAreaIndex; /* area index */
 uint32_t ulSubblockIndex; /* number of sub block */
 uint32_t ulType; /* type of sub block */
 uint32_t ulOffset; /* offset of this sub block within the area */
 uint32_t ulSize; /* size of the sub block */
 uint16_t usFlags; /* flags of the sub block */
 uint16_t usHandshakeMode; /* handshake mode */
 uint16_t usHandshakeBit; /* bit position in the handshake register */
 uint16_t usReserved; /* reserved */
} HIL_DPM_GET_BLOCK_INFO_CNF_DATA_T;

typedef struct HIL_DPM_GET_BLOCK_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DPM_GET_BLOCK_INFO_CNF_DATA_T tData; /* packet data */
} HIL_DPM_GET_BLOCK_INFO_CNF_T;

Area Index ulAreaIndex

This field defines the channel number that the block belongs to. The system channel has the
number 0; the handshake channel has the number 1; the first communication channel has the
number 2 and so on (max. 7).

Sub Block Index ulSubblockIndex

This field holds the number of the block.

System services 60/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Sub Block Type ulType

This field is used to identify the sub block type. The following types are defined.

Value Definition / Description
0x0000 UNDEFINED
0x0001 UNKNOWN
0x0002 PROCESS DATA IMAGE
0x0003 HIGH PRIORITY DATA IMAGE
0x0004 MAILBOX
0x0005 COMON CONTROL
0x0006 COMMON STATUS
0x0007 EXTENDED STATUS
0x0008 USER
0x0009 RESERVED
Other values are reserved

Table 51: Sub Block Type

Offset ulOffset

This field holds the offset of the block based on the start offset of the channel.

Size ulSize

The size field holds the length of the block section in multiples of bytes.

Transmission Flags usFlags

The flags field is separated into nibbles (4 bit entities). The lower nibble is the Transfer Direction
and holds information regarding the data direction from the view point of the application. The
Transmission Type nibble defines how data are physically exchanged with this sub block.

Attention: This information is statically set in the firmware during start-up and not updated during
run-time even if options are changed by the application (e.g. switch to DMA mode).

Bit No. Definition / Description
0-3 Transfer Direction

0 UNDEFINED
1 IN (netX to Host System)
2 OUT (Host System to netX)
3 IN – OUT (Bi-Directional)
Other values are reserved

4-7 Transmission Type
0 UNDEFINED
1 DPM (Dual-Port Memory)
2 DMA (Direct Memory Access)
Other values are reserved

8-15 Reserved, set to 0
Table 52: Transmission Flags

System services 61/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Handshake Mode usHandshakeMode

The handshake mode is defined only for IO data images.

Value Definition / Description
0x0000 UNKNOWN
0x0003 UNCONTROLLED
0x0004 BUFFERED, HOST CONTROLLED
Other values are reserved

Table 53: Hand Shake Mode

Handshake Bit Position usHandshakeBit

Handshake bits are located in the handshake register of a channel and used to synchronize data
access to a given data block. The bit position defines the bit number of the used synchronization
bit. The handshake registers itself are located in the Handshake Channel. The handling of the
handshake cells and synchronization bit is described in the netX DPM interface Manual.

Note: Not all combinations of values from this structure are allowed. Some are even
contradictory and do not make sense.

System services 62/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.10 Flash Device Label
A Hilscher device uses a Flash Device Label to store device-specific hardware data, e.g. serial
number of the device. The FDL has multiple sections describing different kinds of data, has a
header and a footer for identifying and validating the content.

The content of the FDL is written during production only. The application can read data stored in
the FDL using the Device Data Provider Get service (page 75).

The header file Hil_DeviceProductionData.h contains definitions and structures for the FDL.

Header

Offset Type Name Description
0 uint8_t abStartToken[12] Fixed String to detect the beginning of the device production

data: “ProductData>”.
12 uint16_t usLabelSize Size of the complete Label inclusive header and the footer.
14 uint16_t usContentSize Size of the content only.

Basic Device Data

Offset Type Name Description
16 uint16_t usManufacturer Manufacturer ID managed and assigned by Hilscher GmbH.

0 = Undefined; 1 - 255 = Hilscher GmbH; 256 - x = OEM
18 uint16_t usDeviceClass Device classification number
20 uint32_t ulDeviceNumber Device number.

For usManufacturer 1-255 the numbers are managed by
Hilscher GmbH.

24 uint32_t ulSerialNumber Serial number of the device.
28 uint8_t bHwCompatibility Hardware compatibility number.
29 uint8_t bHwRevision Hardware revision number.
30 uint16_t usProductionDate Production date in the format 0xYYWW:

Year = ((usProductionDate >> 8) & 0x00ff) + 2000
Week = ((usProductionDate >> 0) & 0x00ff)
e.g. 0C2Bh, where 0Ch is year 2012 and 2Bh is week 43.

32 uint8_t bReserved1 Reserved, set to 0
33 uint8_t bReserved2 Reserved, set to 0
34 uint8_t abReserved[14] Reserved, set to 0

System services 63/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

MAC addresses for communication side

Offset Type Name Description
48 uint8_t abMacAddress[6] 1st MAC address.
54 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
56 uint8_t abMacAddress[6] 2nd MAC address.
62 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
64 uint8_t abMacAddress[6] 3rd MAC address.
70 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
72 uint8_t abMacAddress[6] 4th MAC address.
78 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
80 uint8_t abMacAddress[6] 5th MAC address.
86 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
88 uint8_t abMacAddress[6] 6th MAC address.
94 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
96 uint8_t abMacAddress[6] 7th MAC address.
102 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
104 uint8_t abMacAddress[6] 8th MAC address.
110 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.

MAC addresses for application side

Offset Type Name Description
112 uint8_t abMacAddress[6] 1st MAC address.
118 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
120 uint8_t abMacAddress[6] 2nd MAC address.
126 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
128 uint8_t abMacAddress[6] 3rd MAC address.
134 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.
136 uint8_t abMacAddress[6] 4th MAC address.
142 uint8_t abReserved[2] 2 Bytes reserved for alignment, set to 0.

Product identification information

Offset Type Name Description
144 uint16_t usUSBVendorID USB Device Vendor ID (VID)
146 uint16_t usUSBProductID USB Device Product ID (PID)
148 uint8_t abUSBVendorName[16] USB Vendor Name. If the String has less than 16 char it

must be null terminated to signal end of string.
164 uint8_t abUSBProductName[16] USB Product Name. If the String has less than 16 char it

must be null terminated to signal end of string.
180 uint8_t abReserved[76] Reserved, set to 0.

System services 64/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

OEM identification

Offset Type Name Description
256 uint32_t ulOemDataOptionFlags OEM Data Option Flags
260 char szSerialNumber[28] Serial number (NULL terminated)
288 char szOrderNumber[32] Order number (NULL terminated)
320 char szHardwareRevision[16] Hardware revision (NULL terminated)
336 char szProductionDate[32] Production date (Null terminated)
368 uint8_t abReserved[12] Reserved, set to 0
380 uint8_t abVendorData[112] Vendor specific data

Flash layout

Offset Type Name Description
492 uint32_t ulContentType Area 0 Content Type
496 uint32_t ulAreaStart Area 0 Start Address
500 uint32_t ulAreaSize Area 0 Size
504 uint32_t ulChipNumber Area 0 Chip Number (Instance)
508 char szName[16] Area 0 Name
524 uint8_t bAccessType Area 0 Access Type
525 uint8_t abReserved[3] Reserved, set to 0
528 Complete Area 1 (see description of Area 0)
564 Complete Area 2 (see description of Area 0)
600 Complete Area 3 (see description of Area 0)
636 Complete Area 4 (see description of Area 0)
672 Complete Area 5 (see description of Area 0)
708 Complete Area 6 (see description of Area 0)
744 Complete Area 7 (see description of Area 0)
780 Complete Area 8 (see description of Area 0)
816 Complete Area 9 (see description of Area 0)
852 uint32_t ulChipNumber Chip 0 Number 0..N (Instance)
856 char szFlashName[16] Chip 0 Flash driver name
872 uint32_t ulBlockSize Chip 0 Block size
876 uint32_t ulFlashSize Chip 0 Flash size
880 uint32_t ulMaxEnduranceCycles Chip 0 Max. number of erase/write cycles
884 Complete Chip 1 (see description of Chip 0)
916 Complete Chip 2 (see description of Chip 0)
948 Complete Chip 3 (see description of Chip 0)

Footer

Offset Type Name Description
980 uint32_t ulChecksum CRC-32 (IEEE 802.3) of Content
984 uint8_t abEndToken[12] Fixed string to detect the end of the device production data:

“<ProductData”

System services 65/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.11 License Information

HW Read License request

The application uses the following packet in order to obtain license information from the netX
firmware. The packet is send through the system mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulCmd uint32_t 0x00001EF4 HIL_HW_LICENSE_INFO_REQ

Table 54: HIL_HW_LICENSE_INFO_REQ_T – HW Read License request

Packet structure reference
/* OBTAIN LICENSE INFORMATION REQUEST */
#define HIL_HW_LICENSE_INFO_REQ 0x00001EF4

typedef struct HIL_HW_LICENSE_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_HW_LICENSE_INFO_REQ_T;

HW Read License confirmation

Variable Type Value / Range Description
ulLen uint32_t

12
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EF5 HIL_HW_LICENSE_INFO_CNF
Data
ulLicenseFlags1 uint32_t 0 … 0xFFFFFFFF License Flags 1
ulLicenseFlags2 uint32_t 0 … 0xFFFFFFFF License Flags 2
usNetxLicenseID uint16_t 0 … 0xFFFF netX License Identification
usNetxLicenseFlags uint16_t 0 … 0xFFFF netX License Flags

Table 55: HIL_HW_LICENSE_INFO_CNF_T – HW Read License confirmation

Packet structure reference
/* OBTAIN LICENSE INFORMATION CONFIRMATION */
#define HIL_HW_LICENSE_INFO_CNF HIL_HW_LICENSE_INFO_REQ+1

typedef struct HIL_HW_LICENSE_INFO_CNF_DATA_Ttag
{
 uint32_t ulLicenseFlags1; /* License Flags 1 */
 uint32_t ulLicenseFlags2; /* License Flags 2 */
 uint16_t usNetxLicenseID; /* License ID */
 uint16_t usNetxLicenseFlags; /* License Flags */
} HIL_HW_LICENSE_INFO_CNF_DATA_T;

typedef struct HIL_HW_LICENSE_INFO_CNFtag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_HW_LICENSE_INFO_CNF_DATA_T tData; /* packet data */
} HIL_HW_LICENSE_INFO_CNF_T;

System services 66/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.12 Error Log information
If an error occurs during the startup phase or in the system channel, the error is stored in an error
log with additional information including timestamp and message.

The error log of the system channel can be read or cleared, using this service.

Due to size constraints, the number of error log entries are limited. For example, the request
HIL_SYSTEM_ERRORLOG_CMD_READINDEX returns an error if no error entry is available or if
ulParameter exceeds the number of entries.

Error Log request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 8 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E12 HIL_SYSTEM_ERRORLOG_REQ
Data
ulCommand uint32_t 0x00000001

0x00000002

0x00000004

HIL_SYSTEM_ERRORLOG_CMD_READINDEX
 Return error log entry with index ulParameter.

HIL_SYSTEM_ERRORLOG_CMD_READCOUNT
 Return number of logged errors. This value may be larger

than the number of errors that can be read.
HIL_SYSTEM_ERRORLOG_CMD_CLEARBUFFERS
 Clear the error log.

ulParameter uint32_t Supplied parameter of ulCommand:
For HIL_SYSTEM_ERRORLOG_CMD_READINDEX
 Index of error log entry to return

Table 56: HIL_SYSTEM_ERRORLOG_REQ_T – Format request

Packet structure reference
#define HIL_SYSTEM_ERRORLOG_REQ 0x00001E12

#define HIL_SYSTEM_ERRORLOG_CMD_READINDEX (0x1)
#define HIL_SYSTEM_ERRORLOG_CMD_READCOUNT (0x2)
#define HIL_SYSTEM_ERRORLOG_CMD_CLEARBUFFERS (0x4)

typedef __HIL_PACKED_PRE struct HIL_SYSTEM_ERRORLOG_REQ_DATA_Ttag
{
 uint32_t ulCommand; /*!< See command defines above */
 uint32_t ulParameter; /*!< Additional parameters of command */
} __HIL_PACKED_POST HIL_SYSTEM_ERRORLOG_REQ_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_SYSTEM_ERRORLOG_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
 HIL_SYSTEM_ERRORLOG_REQ_DATA_T tData; /*!< packet data */
} __HIL_PACKED_POST HIL_SYSTEM_ERRORLOG_REQ_T;

System services 67/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Error log confirmation

Variable Type Value / Range Description
ulLen uint32_t

8 + n
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001ED7 HIL_FORMAT_CNF
Data
ulCommand uint32_t Requested command (same as in error log request)
ulResult uint32_t For HIL_SYSTEM_ERRORLOG_CMD_READINDEX

 Index of returned error log entry.
For HIL_SYSTEM_ERRORLOG_CMD_READCOUNT
 Number of logged errors

For HIL_SYSTEM_ERRORLOG_CMD_CLEARBUFFERS
 0 on success

 HIL_SYSTEM_ERRO
RLOG_CNF_DATA_
ELEMENT_T

 For HIL_SYSTEM_ERRORLOG_CMD_READINDEX
 The requested error log entry, consists of error code,

timestamp and textual description
Table 57: HIL_SYSTEM_ERRORLOG_CNF_T – Format confirmation

Packet structure reference
#define HIL_SYSTEM_ERRORLOG_CNF HIL_SYSTEM_ERRORLOG_REQ+1

typedef __HIL_PACKED_PRE struct HIL_SYSTEM_ERRORLOG_CNF_DATA_Ttag
{
 uint32_t ulCommand; /*!< Requested command */
 uint32_t ulResult; /*!< Index or returning information of ulCommand */
 /* Here follows one HIL_SYSTEM_ERRORLOG_CNF_DATA_ELEMENT depending on ulCommand
 * of request. If available, ulLen in Header is set accordingly
 */
} __HIL_PACKED_POST HIL_SYSTEM_ERRORLOG_CNF_DATA_T;

/* Description string size (remaining space of the packet)
 * 124 bytes = Packet header + ((ulCommand + ulResult) + (ulTimeStamp + ulError)) +
 * szDescription
 */
#define HIL_SYSTEM_ERRORLOG_STRING_LENGTH (HIL_DPM_SYSTEM_MAILBOX_MIN_SIZE -
HIL_PACKET_HEADER_SIZE - sizeof(HIL_SYSTEM_ERRORLOG_CNF_DATA_T) - 2*sizeof(uint32_t))

typedef __HIL_PACKED_PRE struct HIL_SYSTEM_ERRORLOG_CNF_DATA_ELEMENT_Ttag
{
 uint32_t ulTimeStamp; /*!< Seconds since startup */
 uint32_t ulError; /*!< Module specific error value */
 int8_t szDescription[HIL_SYSTEM_ERRORLOG_STRING_LENGTH]; /*!< Description string,
rest of available space */
} __HIL_PACKED_POST HIL_SYSTEM_ERRORLOG_CNF_DATA_ELEMENT_T;

typedef __HIL_PACKED_PRE struct HIL_SYSTEM_ERRORLOG_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
 HIL_SYSTEM_ERRORLOG_CNF_DATA_T tData; /*!< packet data */
} __HIL_PACKED_POST HIL_SYSTEM_ERRORLOG_CNF_T;

System services 68/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.13 General packet fragmentation
Two mailboxes are used to transfer a packet from the host application to the netX firmware or visa
versa. Each mailbox has a limited size (= mailbox size). If the packet to be transferred is larger
than the mailbox size, the packet has to be fragmented.

The mechanism of transferring packets in a fragmented manner is used

 in case the packet (size of packet header and user data) exceeds the size of the mailbox or

 in case the confirmation to a command packet has a variable data size, which exceeds the
size of the mailbox.

Mailbox System

Send Mailbox Receive Mailbox

netX Firmware

Host Application

Overview

Two fragmentation mechanisms exist.

Packet fragmentation
For the system channel,
General packet fragmentation is
used as described in this section.

For the communication channel,
Communication channel packet fragmentation is used. For a basic
description, see section Communication channel packet fragmentation on
page 105, for a detailed description see reference [2].

Table 58: Packet fragmentation overview

Note: Packet Fragmentation is not a default mechanism for all packet commands. The
general handling is described in this section and if supported it is explicitly noted in the
packet command definition!

System services 69/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Handling for general packet fragmentation

Packet fragmentation is handled by the ulExt and ulId variable in the packet header. The
ulExt variable defines whether a packet belongs to a sequence and indicates the state of a
sequenced transfer (first/middle/last). ulId is used as a packet index within a sequence to ensure
a strict packet order handling during a transfer.

Note: Fragmented packets must be sent in a strict order given by ulId. Out of order
transfers are not supported.

Header variable Description
ulExt Indication of a sequenced packet transfer

0x00000000 = HIL_PACKET_SEQ_NONE None sequenced (default)
0x00000080 = HIL_PACKET_SEQ_FIRST First packet of a sequence
0x000000C0 = HIL_PACKET_SEQ_MIDDLE Packet inside a sequence
0x00000040 = HIL_PACKET_SEQ_LAST Last packet of a sequence

ulId Packet number within a sequence
 Start value is 0 (not mandatory)
 Incremented by one for each packet in a sequence

Table 59: Packet Fragmentation: Extension and Identifier Field

System services 70/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Example

Fragmented Transfer Host  netX Firmware (Initiated by host application)

Host application knows that data does not fit into the send mailbox.

Step Direction
(App | Task)

Description ulCmd ulId ulExt

1
 Command CMD

0
HIL_PACKET_SEQ_FIRST

 Answer CMD + 1 HIL_PACKET_SEQ_FIRST

2
 Command CMD

1
HIL_PACKET_SEQ_MIDDLE

 Answer CMD + 1 HIL_PACKET_SEQ_MIDDLE

3
 Command CMD

2
HIL_PACKET_SEQ_MIDDLE

 Answer CMD + 1 HIL_PACKET_SEQ_MIDDLE

… … ... …

n
 Command CMD

n
HIL_PACKET_SEQ_LAST

 Answer CMD + 1 HIL_PACKET_SEQ_LAST

Table 60: Packet Fragmentation: Example - Host to netX Firmware

Fragmented Transfer netX Firmware  Host (Initiated by host application)

Host application does not know how many packets will be received.

Step Direction
(App | Task)

Description ulCmd ulId ulExt

1
 Command CMD

0
HIL_PACKET_SEQ_NONE

 Answer CMD + 1 HIL_PACKET_SEQ_FIRST

2
 Command CMD

1
HIL_PACKET_SEQ_MIDDLE

 Answer CMD + 1 HIL_PACKET_SEQ_MIDDLE

3
 Command CMD

2
HIL_PACKET_SEQ_MIDDLE

 Answer CMD + 1 HIL_PACKET_SEQ_MIDDLE

… … ... …

n
 Command CMD

n
HIL_PACKET_SEQ_MIDDLE

 Answer CMD + 1 HIL_PACKET_SEQ_LAST

Table 61: Packet Fragmentation: Example - netX Firmware to Host

System services 71/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

General Abort Handling

If an error is detected during a fragmented packet transfer, the transfer has to be aborted before
the last packet is transferred. Examples for a fragmented packet transfers are file download and
file upload functions.

Possible Errors:

 ulId, index skipped, used twice, or out of order

 ulExt, state out of order

 ulSta in the answer not zero, returned by the answering process

Note: If a service needs an abort handling will be mentioned in this manual.

Abort – Command

Structure Information: HIL_PACKET_HEADER

Area Variable Type Value / Range Description
tHead ulDest UINT32 n Destination Address / Handle

ulSrc UINT32 n Source Address / Handle
ulDestId UINT32 n Destination Identifier
ulSrcId UINT32 n Source Identifier
ulLen UINT32 0 Packet Data Length (in Byte)
ulId UINT32 ANY Packet Identifier
ulSta UINT32 0 Packet State / Error
ulCmd UINT32 Active CMD Packet Command / Confirmation
ulExt UINT32

0x00000040
Packet Extension
Last Packet of Sequence

ulRout UINT32 0x00000000 Reserved (routing information)
Table 62: Packet Fragmentation: Abort Command

Abort - Confirmation

Structure Information: HIL_PACKET_HEADER

Area Variable Type Value / Range Description
tHead ulDest UINT32 From Request Destination Address / Handle

ulSrc UINT32 From Request Source Address / Handle
ulDestId UINT32 From Request Destination Identifier
ulSrcId UINT32 From Request Source Identifier
ulLen UINT32 0 Packet Data Length (in Byte)
ulId UINT32 From Request Packet Identifier
ulSta UINT32

0
Packet State / Error
SUCCESS_HIL_OK (always)

ulCmd UINT32 CMD+1 Packet Command / Confirmation
ulExt UINT32

0x00000040
Packet Extension
Last Packet of Sequence

ulRout UINT32 Reserved (routing information)
Table 63: Packet Fragmentation: Abort Confirmation

System services 72/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.14 Device Data Provider
The Device Data Provider (DDP) contains device-specific data e.g. the MAC addresses of the
device. The Device Data Provider reads the device data from an underlying data source e.g. from
the Flash Device Label (FDL) and stores these data in the RAM.

The application can use the Device Data Provider Get service (page 75) to read device data from
the Device Data Provider.

The application can use the Device Data Provider Set service (page 77) to change device data in
the Device Data Provider. Changed device data will be stored in a temporary buffer only and will
not be written to the underlying data source. Already initialized components will be not be updated
with new device data, if the application changes device data values during runtime.

This service uses a maximum payload of 80 byte in order to fit into the smallest mailbox e.g. the
system mailbox.

The following table lists the device data information provided by the DDP service. If the
ulDataType is listed in the table with "Yes", the application can access this device data. Each
device data has its specific data format, e.g. data-specific structures or generic types as 32-bit
value or strings.

ulDataType
(prefix HIL_DDP_SERVICE_DATATYPE_)

Get Set Access

BASE_DEVICE_DATA Yes Yes uDataType.tBaseDeviceData
MAC_ADDRESSES_APP Yes Yes uDataType.atMacAddress
MAC_ADDRESSES_COM Yes Yes uDataType.atMacAddress
USB_INFORMATION Yes Yes uDataType.tUSBInfo
STORAGE_FLASH_AREA_0
…
STORAGE_FLASH_AREA_9

Yes No uDataType.tFlashArea

STORAGE_FLASH_CHIP_0
…
STORAGE_FLASH_CHIP_3

Yes No uDataType.tFlashChip

OEM_OPTIONS Yes Yes uDataType.ulValue
OEM_SERIALNUMBER Yes Yes uDataType.szString
OEM_ORDERNUMBER Yes Yes uDataType.szString
OEM_HARDWAREREVISION Yes Yes uDataType.szString
OEM_PRODUCTIONDATE Yes Yes uDataType.szString
OEM_VEDORDATA_0
OEM_VEDORDATA_1

Yes Yes uDataType.abData

Table 64: Device data identification (Device Data Provider)

The atMacAdress[13] structure can hold a maximum of 13 different MAC addresses, 8 for the
communication side and 4 for the application side.

The abData field is an 80 byte blob that will be read/written as it is stored in the DDP.

The OEM vendor data is defined as a 112 byte area in the DDP. To read the OEM vendor data, the
application has to use two Device Data Provider Get services: OEM_VENDORDATA_0 to read the
first 80 byte and OEM_VENDORDATA_1 to read the rest of the area.

The szString field is a NULL-terminated string.

The ulValue field is a 32-bit value.

System services 73/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

The following defines and structures are used by the Get and Set services.
#define HIL_DDP_SERVICE_DATATYPE_BASE_DEVICE_DATA (0x00)

#define HIL_DDP_SERVICE_DATATYPE_MAC_ADDRESSES_APP (0x10)

#define HIL_DDP_SERVICE_DATATYPE_MAC_ADDRESSES_COM (0x20)

#define HIL_DDP_SERVICE_DATATYPE_USB_INFORMATION (0x30)

#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_0 (0x41)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_1 (0x42)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_2 (0x43)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_3 (0x44)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_4 (0x45)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_5 (0x46)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_6 (0x47)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_7 (0x48)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_8 (0x49)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_9 (0x4A)

#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_CHIP_0 (0x51)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_CHIP_1 (0x52)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_CHIP_2 (0x53)
#define HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_CHIP_3 (0x54)

#define HIL_DDP_SERVICE_DATATYPE_OEM_OPTIONS (0x60)
#define HIL_DDP_SERVICE_DATATYPE_OEM_SERIALNUMBER (0x61)
#define HIL_DDP_SERVICE_DATATYPE_OEM_ORDERNUMBER (0x62)
#define HIL_DDP_SERVICE_DATATYPE_OEM_HARDWAREREVISION (0x63)
#define HIL_DDP_SERVICE_DATATYPE_OEM_PRODUCTIONDATE (0x64)
#define HIL_DDP_SERVICE_DATATYPE_OEM_VEDORDATA_0 (0x66) /* 80 Bytes payload */
#define HIL_DDP_SERVICE_DATATYPE_OEM_VEDORDATA_1 (0x67) /* 32 Bytes payload */

/* DDP number definitions, compare with values in DeviceProductionData.h */

#define HIL_DDP_SERVICE_DEFAULT_NAME_SIZE (16)

#define HIL_DDP_SERVICE_MAC_APP_NUM (4)
#define HIL_DDP_SERVICE_MAC_COM_NUM (8)

#define HIL_DDP_SERVICE_FLASH_AREA_NUM (10)
#define HIL_DDP_SERVICE_FLASH_CHIP_NUM (4)

/* DDP service structures */
typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_BASE_DEVICE_DATA_Ttag
{
 /* Members as defined in HIL_PRODUCT_DATA_BASIC_DEVICE_DATA_T of
 DeviceProductionData.h */
 uint16_t usManufacturer;
 uint16_t usDeviceClass;
 uint32_t ulDeviceNumber;
 uint32_t ulSerialNumber;
 uint8_t bHwCompatibility;
 uint8_t bHwRevision;
 uint16_t usProductionDate;
} __HIL_PACKED_POST HIL_DDP_SERVICE_BASE_DEVICE_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_MAC_ADDRESS_Ttag
{
 uint8_t abMacAddress[6];
} __HIL_PACKED_POST HIL_DDP_SERVICE_MAC_ADDRESS_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_USB_INFO_Ttag
{
 uint16_t usUSBVendorID; /*!< USB Device vendor ID (VID) */
 uint16_t usUSBProductID; /*!< USB Device product ID (PID) */
 uint8_t abUSBVendorName[HIL_DDP_SERVICE_DEFAULT_NAME_SIZE];
 /*!< USB Product name (Byte array) */
 uint8_t abUSBProductName[HIL_DDP_SERVICE_DEFAULT_NAME_SIZE];

System services 74/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

 /*!< USB Product name string (Byte array) */
} __HIL_PACKED_POST HIL_DDP_SERVICE_USB_INFO_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_LIBSTORAGE_AREA_Ttag
{
 /* Members as defined in HIL_PRODUCT_DATA_LIBSTORAGE_AREAS_T of
 DeviceProductionData.h */
 uint32_t ulContentType;
 uint32_t ulAreaStart;
 uint32_t ulAreaSize;
 uint32_t ulChipNumber;
 int8_t szName[HIL_DDP_SERVICE_DEFAULT_NAME_SIZE];
 uint8_t bAccessTyp;
} __HIL_PACKED_POST HIL_DDP_SERVICE_LIBSTORAGE_AREA_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_LIBSTORAGE_CHIP_Ttag
{
 /* Members as defined in HIL_PRODUCT_DATA_LIBSTORAGE_CHIPS_T of
 DeviceProductionData.h */
 uint32_t ulChipNumber;
 int8_t szFlashName[HIL_DDP_SERVICE_DEFAULT_NAME_SIZE];
 uint32_t ulBlockSize;
 uint32_t ulFlashSize;
 uint32_t ulMaxEnduranceCycles;
} __HIL_PACKED_POST HIL_DDP_SERVICE_LIBSTORAGE_CHIP_T;

System services 75/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.14.1 Device Data Provider Get service
The application can use this service to read device data from the Device Data Provider (DDP).

Device Data Provider Get request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EEA HIL_DDP_SERVICE_GET_REQ
Data
ulDataType uint32_t One of the HIL_DDP_SERVICE_DATATYPE_* defines

described above.
Table 65: HIL_DDP_SERVICE_GET_REQ_T – Device Data Provider Get request

Packet structure reference
/* DDP SERVICE GET REQUEST */
#define HIL_DDP_SERVICE_GET_REQ 0x00001EEA

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_GET_REQ_DATA_Ttag
{
 uint32_t ulDataType; /*!< DDP_SERVICE_DATATYPE_* definitions
*/
} __HIL_PACKED_POST HIL_DDP_SERVICE_GET_REQ_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_GET_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
 HIL_DDP_SERVICE_GET_REQ_DATA_T tData; /*!< packet data */
} __HIL_PACKED_POST HIL_DDP_SERVICE_GET_REQ_T;

System services 76/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Device Data Provider Get confirmation

Variable Type Value / Range Description
ulLen uint32_t

4 + n
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EEB HIL_DDP_SERVICE_GET_CNF
Data
ulDataType uint32_t The HIL_DDP_SERVICE_DATATYPE_* define sent in the

request packet.
uDataType union A union of structures corresponding to ulDataType.

Table 66: HIL_DDP_SERVICE_GET_CNF_T – Device Data Provider Get confirmation

Packet structure reference
/* DDP SERVICE GET CONFIRMATION */
#define HIL_DDP_SERVICE_GET_CNF HIL_DDP_SERVICE_GET_REQ+1

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_GET_CNF_DATA_Ttag
{
 uint32_t ulDataType; /*!< DDP_SERVICE_DATATYPE_*
definitions */
 union HIL_DDP_SERVICE_GET_DATATYPE_U
 {
 /* Fixed structures for specific ulDataType */
 HIL_DDP_SERVICE_BASE_DEVICE_DATA_T tBaseDeviceData;
 /*!< HIL_DDP_SERVICE_DATATYPE_BASE_DEVICE_DATA */
 HIL_DDP_SERVICE_USB_INFO_T tUSBInfo;
 /*!< HIL_DDP_SERVICE_DATATYPE_USB_INFORMATION */
 HIL_DDP_SERVICE_LIBSTORAGE_AREA_T tFlashArea;
 /*!< HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_AREA_* */
 HIL_DDP_SERVICE_LIBSTORAGE_CHIP_T tFlashChip;
 /*!< HIL_DDP_SERVICE_DATATYPE_STORAGE_FLASH_CHIP_* */

 /* Members for multiple keys (ulDataType) */
 uint32_t ulValue; /*!< Keys with 32bit values, e.g. OEM Option Flags */
 /* The following arrays are defined with maximum values.
 Actual valid or used length/sizes dependent on DataType and my be smaller. */
 int8_t szString[80]; /*!< Strings, e.g. OEM Serial Number; maximum 80 bytes
 (including NULL termination) */
 uint8_t abData[80]; /*!< Binary data, e.g. OEM Vendor Data; maximum 80 bytes */
 HIL_DDP_SERVICE_MAC_ADDRESS_T atMacAddress[13];
 /*!< HIL_DDP_SERVICE_DATATYPE_MAC_ADDRESSES_*;
 maximum 13 addresses (6bytes*13=78) */
 } uDataType;
} __HIL_PACKED_POST HIL_DDP_SERVICE_GET_CNF_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_GET_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
 HIL_DDP_SERVICE_GET_CNF_DATA_T tData; /*!< packet data */
} __HIL_PACKED_POST HIL_DDP_SERVICE_GET_CNF_T;

System services 77/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.14.2 Device Data Provider Set service
The application can use this service to change device data in the Device Data Provider, e.g. to
change a MAC address.

During start of the device, the firmware reads the static device data from the Flash Device Label.
The application can change device data using this service before configuring the firmware. Device
data must be set at the latest before setting the "Bus State on". The firmware will use the device
data from the Device Data Provider as they are present before the first state change to "Bus State
on".

The changed device data will be stored in a temporary buffer only and will not be written to the
underlying data source e.g. Flash Device Label. After a reset, channel init or power cycle, the
application must use this service again.

If the application changes device data values during runtime, already initialized components will be
not be updated with new device data.

Device Data Provider Set request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 4 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EEC HIL_DDP_SERVICE_SET_REQ
Data
ulDataType uint32_t One of the HIL_DDP_SERVICE_DATATYPE_* defines

described above.
uDataType union A union of structures corresponding to ulDataType.

Table 67: HIL_DDP_SERVICE_SET_REQ_T – Device Data Provider Set request

Packet structure reference
/* DDP SERVICE SET REQUEST */
#define HIL_DDP_SERVICE_SET_REQ 0x00001EEC

typedef HIL_DDP_SERVICE_GET_CNF_DATA_T HIL_DDP_SERVICE_SET_REQ_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_SET_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
 HIL_DDP_SERVICE_SET_REQ_DATA_T tData; /*!< packet data */
} __HIL_PACKED_POST HIL_DDP_SERVICE_SET_REQ_T;

Device Data Provider Set confirmation

Variable Type Value / Range Description
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EED HIL_DDP_SERVICE_SET_CNF

Table 68: HIL_DDP_SERVICE_SET_CNF_T – Device Data Provider Set confirmation

/* DDP SERVICE SET CONFIRMATION */

#define HIL_DDP_SERVICE_SET_CNF HIL_DDP_SERVICE_SET_REQ+1

typedef __HIL_PACKED_PRE struct HIL_DDP_SERVICE_SET_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< packet header */
} __HIL_PACKED_POST HIL_DDP_SERVICE_SET_CNF_T;

System services 78/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.15 Exception handler
The exception handler is started when a firmware crashes. It supports a small number of packet
services, which can help identify the cause of the exception.

The execution of the exception handler is identified by

 the blink pattern of the SYS-LED (3x yellow, 3x green)

 a HIL_FIRMWARE_IDENTIFY_REQ will be answered with “ExceptionHandler”

 ulSystemError and ulCommunicationError in the DPM have error code
ERR_HIL_FIRMWARE_CRASHED

The services supported by the exception handler are listed in the following table.

Exception handler services

Read the name and version or firmware, operating
system or protocol stack running on a communication
channel

HIL_FIRMWARE_IDENTIFY_REQ 21

Firmware and system reset HIL_FIRMWARE_RESET_REQ 13

Get exception context from crashed firmware HIL_EXCEPTION_INFO_REQ 78

Read physical memory from crashed firmware HIL_PHYSMEM_READ_REQ 81

Commands that are not supported will return the ERR_HIL_FIRMWARE_CRASHED error code in the
ulSta field.

3.15.1 Exception Information service
Using this service, the exception context of a crashed firmware can be retrieved.

Exception Context Information request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 0 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E14 HIL_EXCEPTION_INFO_REQ

Table 69: HIL_EXCEPTION_INFO_REQ_T – Exception Information request

Packet structure reference
/* EXCEPTION INFO REQUEST */
#define HIL_EXCEPTION_INFO_REQ 0x00001E14

typedef __HIL_PACKED_PRE struct HIL_EXCEPTION_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead;
} __HIL_PACKED_POST HIL_EXCEPTION_INFO_REQ_T;

System services 79/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Exception Information confirmation

Variable Type Value / Range Description
ulLen uint32_t

84
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E15 HIL_EXCEPTION_INFO_CNF
Data
ulType uint32_t

1
2
3

Exception type
HIL_EXCEPTION_TYPE_EXCEPTION
HIL_EXCEPTION_TYPE_THREAD
HIL_EXCEPTION_TYPE_INTERRUPT

ulVector uint32_t Exception vector
aulR[11] uint32_t[11] Registers r0-r10
ulFP uint32_t Frame pointer (r11)
ulIP uint32_t Intra-procedure call scratch register (r12)
ulSP uint32_t Stack pointer (r13)
ulLR uint32_t Linker register (r14)
ulPC uint32_t Program counter (r15)
ulPSR uint32_t Program status register (PSR/CPSR)
ulDFSR/ulXLR uint32_t Cortex-R: ulDFSR

Cortex-M: ulXLR
ulDFAR/ulBASE
PRI

uint32_t Cortex-R: ulDFAR
Cortex-M: ulBASEPRI

Table 70: HIL_EXCEPTION_INFO_CNF_T – Exception Information confirmation

Depending on the exception type (ulType), fields are not used (set to zero) in the specified
architectures.

Exception type (ulType) Cortex-M Cortex-R
HIL_EXCEPTION_TYPE_EXCEPTION ulSP All fields are used
HIL_EXCEPTION_TYPE_THREAD ulLR, ulPSR, ulVector, ulXLR not available
HIL_EXCEPTION_TYPE_INTERRUPT aulR[4]-aulR[10], ulFP, ulBASEPRIO,

ulSP, ulVector, ulXLR
not available

System services 80/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Packet structure reference
/* EXCEPTION INFO CONFIRMATION */
#define HIL_FORMAT_CNF HIL_EXCEPTION_INFO_REQ+1

typedef __HIL_PACKED_PRE struct HIL_EXCEPTION_INFO_CNF_DATA_Ttag
{
 uint32_t ulType; /* State type: exception, thread,
interrupt */
 uint32_t ulVector; /* Vector number */

 uint32_t aulR[11]; /* General purpose registers (R0..R10) */
 uint32_t ulFP; /* Frame pointer (R11) */
 uint32_t ulIP; /* Intra-procedure call scratch register
(R12) */
 uint32_t ulSP; /* Stack pointer (R13) */
 uint32_t ulLR; /* Link register (R14) */
 uint32_t ulPC; /* Program counter (R15) */
 uint32_t ulPSR; /* Program status register (PSR/CPSR) */

 union
 {
 /* ARM/Cortex-R */
 struct
 {
 uint32_t ulDFSR; /* Data fault status register */
 uint32_t ulDFAR; /* Data fault address register */
 } arm;

 /* Cortex-M */
 struct
 {
 uint32_t ulXLR; /* Exception return LR (Cortex-M) */
 uint32_t ulBASEPRI; /* Base priority level (Cortex-M) */
 } cm;
 } u;
} __HIL_PACKED_POST HIL_EXCEPTION_INFO_CNF_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_EXCEPTION_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 HIL_EXCEPTION_INFO_CNF_DATA_T tData;
} __HIL_PACKED_POST HIL_EXCEPTION_INFO_CNF_T;

System services 81/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

3.15.2 Read Physical Memory service
Using this service, physical memory can be read from the netX.

Note: The physical memory read request allows reading of any memory address within the
netX. This service should only be used with a good understanding of the netX specific
memory layout. By accessing unmapped locations, the CPU might access a locked-up
state and the netX won’t react to any further commands.

Read Physical Memory request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 12 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EA8 HIL_PHYSMEM_READ_REQ
Data
ulPhysicalAdd
ress

uint32_t Address to read from.
Depending on access type, address needs to be 8, 16, or 32-
bit aligned.

ulAccessType uint32_t
0
1
2
3

Type of memory access
HIL_PHYSMEM_ACCESSTYPE_8BIT
HIL_PHYSMEM_ACCESSTYPE_16BIT
HIL_PHYSMEM_ACCESSTYPE_32BIT
HIL_PHYSMEM_ACCESSTYPE_TASK (not supported)

ulReadLength uint32_t Length to be read (limited by mailbox size).
Table 71: HIL_PHYSMEM_READ_REQ_T – Read Physical Memory request

Packet structure reference
/* PHYSICAL MEMORY READ REQUEST */
#define HIL_PHYSMEM_READ_REQ 0x00001EA8

#define HIL_PHYSMEM_ACCESSTYPE_8BIT 0
#define HIL_PHYSMEM_ACCESSTYPE_16BIT 1
#define HIL_PHYSMEM_ACCESSTYPE_32BIT 2
#define HIL_PHYSMEM_ACCESSTYPE_TASK 3

/***** request packet *****/
typedef __HIL_PACKED_PRE struct HIL_PHYSMEM_READ_REQ_DATA_Ttag
{
 uint32_t ulPhysicalAddress;
 uint32_t ulAccessType;
 uint32_t ulReadLength;

} __HIL_PACKED_POST HIL_PHYSMEM_READ_REQ_DATA_T;

typedef __HIL_PACKED_PRE struct HIL_PHYSMEM_READ_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 HIL_PHYSMEM_READ_REQ_DATA_T tData;
} __HIL_PACKED_POST HIL_PHYSMEM_READ_REQ_T;

System services 82/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Read Physical Memory confirmation

Variable Type Value / Range Description
ulLen uint32_t

n
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EA9 HIL_PHYSMEM_READ_CNF
Data
 Data read from netX

Table 72: HIL_PHYSMEM_READ_CNF_T – Read Physical Memory confirmation

Packet structure reference
/* PHYSICAL MEMORY READ CONFIRMATION */
#define HIL_PHYSMEM_READ_CNF HIL_PHYSMEM_READ_REQ+1

/***** confirmation packet *****/
typedef __HIL_PACKED_PRE struct HIL_PHYSMEM_READ_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
} __HIL_PACKED_POST HIL_PHYSMEM_READ_CNF_T;

Communication Channel services 83/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4 Communication Channel services
The following functions corresponding to information and functionalities of a communication
channel.

4.1 Function overview
Communication Channel services

Service Command definition Page

Communication Channel Information Blocks

Read the Common Control Block of a channel HIL_CONTROL_BLOCK_REQ 84

Read the Common Status Block of a channel HIL_DPM_GET_COMMON_STATE_REQ 86

Read the Extended Status Block of a channel HIL_DPM_GET_EXTENDED_STATE_REQ 88

Read Communication Flag States

Read the communication flags of a specified communication channel HIL_DPM_GET_COMFLAG_INFO_REQ 90

Read the I/O Process Data Image Size

Read the configured size of the I/O process data image HIL_GET_DPM_IO_INFO_REQ 92

Channel Initialization

Re-initialize / re-configure a protocol stack HIL_CHANNEL_INIT_REQ 95

Delete Protocol Stack Configuration

Delete a actual configuration of a protocol stack HIL_DELETE_CONFIG_REQ 97

Lock / Unlock Configuration

Lock or unlock a configuration against changes HIL_LOCK_UNLOCK_CONFIG_REQ 99

Start / Stop Communication

Start or stop network communication HIL_START_STOP_COMM_REQ 100

Channel Watchdog Time

Read the actual watchdog time of a communication channel HIL_GET_WATCHDOG_TIME_REQ 101

Set the watchdog time of a communication channel HIL_SET_WATCHDOG_TIME_REQ 102

Channel Component Information

Read information about all components of one channel GENAP_GET_COMPONENT_IDS_REQ 103
Table 73: Communication Channel services (function overview)

Communication Channel services 84/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.2 Communication Channel Information Blocks
The following packets are used to make certain data blocks, located in the communication channel,
available for read access through the communication channel mailbox.

These data blocks are useful for applications and configuration tool like SYCON.net because the
blocks contain important states and information about a fieldbus protocol stack.

If the requested data block exceeds the maximum mailbox size, the block is transferred using
packet fragmentation as described in section General packet fragmentation on page 68.

4.2.1 Read Common Control Block

Note: For a detailed description about the Common Control Block, see reference [1].

Read Common Control Block request

This packet is used to request the Common Control Block. The firmware returns the Common
Control Block of the used Communication Channel and ignores the communication channel
identifier ulChannelId. If the System Channel is used, the firmware will return the Common
Control Block addressed by ulChannelId.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001E3A HIL_CONTROL_BLOCK_REQ
Data
ulChannelId uint32_t 0 … 3 Communication Channel Number

Table 74: HIL_READ_COMM_CNTRL_BLOCK_REQ_T – Read Common Control Block request

Packet structure reference
/* READ COMMUNICATION CONTROL BLOCK REQUEST */
#define HIL_CONTROL_BLOCK_REQ 0x00001E3A

typedef struct HIL_READ_COMM_CNTRL_BLOCK_REQ_DATA_Ttag
{
 uint32_t ulChannelId; /* channel identifier */
} HIL_READ_COMM_CNTRL_BLOCK_REQ_DATA_T;

typedef struct HIL_READ_COMM_CNTRL_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_COMM_CNTRL_BLOCK_REQ_DATA_T tData; /* packet data */
} HIL_READ_COMM_CNTRL_BLOCK_REQ_T;

Communication Channel services 85/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Read Common Control Block confirmation

The following packet is returned by the firmware.

Variable Type Value / Range Description
ulLen uint32_t

8
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001E3B HIL_CONTROL_BLOCK_CNF
Data
tControl Structure Communication Control Block

Table 75: HIL_READ_COMM_CNTRL_BLOCK_CNF_T – Read Common Control Block confirmation

Packet structure reference
/* READ COMMUNICATION CONTROL BLOCK CONFIRMATION */
#define HIL_CONTROL_BLOCK_CNF HIL_CONTROL_BLOCK_REQ+1

typedef struct HIL_READ_COMM_CNTRL_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_CONTROL_BLOCK_T tControl; /* control block */
} HIL_READ_COMM_CNTRL_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_COMM_CNTRL_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_COMM_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_COMM_CNTRL_BLOCK_CNF_T;

Communication Channel services 86/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.2.2 Read Common Status Block
The Common Status Block contains common fieldbus information offered by all fieldbus systems.

Note: For a detailed description about the Common Status Block, see reference [1].

Read Common Status Block request

This packet is used to request the Common Status Block. The firmware returns the Common
Status Block of the used Communication Channel and ignores the communication channel
identifier ulChannelId. If the System Channel is used, the firmware return the Common Status
Block addressed by ulChannelId.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EFC HIL_DPM_GET_COMMON_STATE_REQ
Data
ulChannelId uint32_t 0 … 3 Communication Channel Number

Table 76: HIL_READ_COMMON_STS_BLOCK_REQ_T – Read Common Status Block request

Packet structure reference
/* READ COMMON STATUS BLOCK REQUEST */
#define HIL_DPM_GET_COMMON_STATE_REQ 0x00001EFC

typedef struct HIL_READ_COMMON_STS_BLOCK_REQ_DATA_Ttag
{
 uint32_t ulChannelId; /* channel identifier */
} HIL_READ_COMMON_STS_BLOCK_REQ_DATA_T;

typedef struct HIL_READ_COMMON_STS_BLOCK_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_COMMON_STS_BLOCK_REQ_DATA_T tData; /* packet data */
} HIL_READ_COMMON_STS_BLOCK_REQ_T;

Communication Channel services 87/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Read Common Status Block confirmation

The following packet is returned by the firmware.

Variable Type Value / Range Description
ulLen uint32_t

64
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EFD HIL_DPM_GET_COMMON_STATE_CNF
Data
tCommonStatus Structure Common Status Block

Table 77: HIL_READ_COMMON_STS_BLOCK_CNF_T – Read Common Status Block confirmation

Packet structure reference
/* READ COMMON STATUS BLOCK CONFIRMATION */
#define HIL_DPM_GET_COMMON_STATE_CNF HIL_DPM_GET_COMMON_STATE_REQ+1

typedef struct HIL_READ_COMMON_STS_BLOCK_CNF_DATA_Ttag
{
 HIL_DPM_COMMON_STATUS_BLOCK_T tCommonStatus; /* common status */
} HIL_READ_COMMON_STS_BLOCK_CNF_DATA_T;

typedef struct HIL_READ_COMMON_STS_BLOCK_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_READ_COMMON_STS_BLOCK_CNF_DATA_T tData; /* packet data */
} HIL_READ_COMMON_STS_BLOCK_CNF_T;

Communication Channel services 88/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.2.3 Read Extended Status Block
This packet is used to read the Extended Status Block. This block contains protocol stack and
fieldbus specific information (e.g. specific master state information).

Note: For a detailed description about the Extended Status Block, see reference [1].

This packet is used to request the Extended Status Block. The firmware returns the Extended
Status Block of the used Communication Channel and ignores the communication channel
identifier ulChannelId. If the System Channel is used, the firmware return the Extended Status
Block addressed by ulChannelId.

Read Extended Status Block request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 12 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EFE HIL_DPM_GET_EXTENDED_STATE_REQ
Data
ulOffset uint32_t 0 … 431 Byte offset in extended status block structure
ulDataLen uint32_t 1 … 432 Length in byte read
ulChannel
Index

uint32_t 0 … 3 Communication Channel Number

Table 78: HIL_DPM_GET_EXTENDED_STATE_REQ_T – Read Extended Status Block request

Packet structure reference
/* READ EXTENDED STATUS BLOCK REQUEST */
#define HIL_DPM_GET_EXTENDED_STATE_REQ 0x00001EFE

typedef struct HIL_DPM_GET_EXTENDED_STATE_REQ_DATA_Ttag
{
 uint32_t ulOffset; /* offset in extended status block */
 uint32_t ulDataLen; /* size of block to read */
 uint32_t ulChannelIndex; /* channel number */
} HIL_DPM_GET_EXTENDED_STATE_REQ_DATA_T;

typedef struct HIL_DPM_GET_EXTENDED_STATE_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DPM_GET_EXTENDED_STATE_REQ_DATA_T tData; /* packet data */
} HIL_DPM_GET_EXTENDED_STATE_REQ_T;

Communication Channel services 89/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Read Extended Status Block confirmation

The following packet is returned by the firmware.

Variable Type Value / Range Description
ulLen uint32_t

1 … 432
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EFF HIL_DPM_GET_EXTENDED_STATE_CNF
ulExt uint32_t

0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

Data
ulOffset uint32_t 0 … 431 Byte offset in extended status block structure
ulDataLen uint32_t 1 … 432 Length in byte
abData[432] uint8_t 0 … n Extended Status Block data

Table 79: HIL_DPM_GET_EXTENDED_STATE_CNF_T – Read Extended Status Block confirmation

Packet structure reference
/* READ EXTENDED STATUS BLOCK CONFIRMATION */
#define HIL_DPM_GET_EXTENDED_STATE_CNF HIL_DPM_GET_EXTENDED_STATE_REQ+1

typedef struct HIL_DPM_GET_EXTENDED_STATE_CNF_DATA_Ttag
{
 uint32_t ulOffset; /* offset in extended status block */
 uint32_t ulDataLen; /* size of block returned */
 uint8_t abData[432]; /* data block */
} HIL_DPM_GET_EXTENDED_STATE_CNF_DATA_T;

typedef struct HIL_DPM_GET_EXTENDED_STATE_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_DPM_GET_EXTENDED_STATE_CNF_DATA_T tData; /* packet data */
} HIL_DPM_GET_EXTENDED_STATE_CNF_T;

Communication Channel services 90/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.3 Read the Communication Flag States
This service allows reading the Communication Flags of a specified channel. These flags are used
to synchronise the data transfer between a host and a netX target and containing general system
states information like NCF_COMMUNICATING or NCF_ERROR.

Note: The functionality and the content of the Communication Flags are described in the netX
DPM Interface Manual.

DPM Get ComFlag Info request

Variable Type Value / Range Description
ulDest uint32_t 0x00000000 HIL_PACKET_DEST_SYSTEM
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00001EFA HIL_DPM_GET_COMFLAG_INFO_REQ
Data
ulAreaIndex uint32_t 0 … 5 Area Index (see below)

Table 80: HIL_DPM_GET_COMFLAG_INFO_REQ_T – DPM Get ComFlag Info request

Packet structure reference
/* DPM GET COMFLAG INFO REQUEST */
#define HIL_DPM_GET_COMFLAG_INFO_REQ 0x00001EFA

typedef struct HIL_DPM_GET_COMFLAG_INFO_REQ_DATA_Ttag
{
 uint32_t ulAreaIndex; /* area index */
} HIL_DPM_GET_COMFLAG_INFO_REQ_DATA_T;

typedef struct HIL_DPM_GET_COMFLAG_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /* packet header */
 HIL_DPM_GET_COMFLAG_INFO_REQ_DATA_T tData; /* packet data */
} HIL_DPM_GET_COMFLAG_INFO_REQ_T;

Area Index: ulAreaIndex

This field holds the index of the channel. The area index counts all channels in a firmware starting
with index 0 for the system channel. The first communication channel will have the index 2 and so
on.

Index Channel Description

0 System Channel

1 Handshake Channel

2 Communication Channel 0

3 Communication Channel 1

4 Communication Channel 2

5 Communication Channel 3
Table 81: Area Index

Communication Channel services 91/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

DPM Get ComFlag Info confirmation

Variable Type Value / Range Description
ulLen uint32_t

12
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00001EFB HIL_DPM_GET_COMFLAG_INFO_CNF
Data
ulAreaIndex uint32_t 0 … 5 Area Index (see above)
ulNetxComFlag uint32_t Bit Field Current netX Communication Flags
ulHostComFlag uint32_t Bit Field Current Host Communication Flags

Table 82: HIL_DPM_GET_COMFLAG_INFO_CNF_T – DPM Get ComFlag Info confirmation

Packet structure reference
/* DPM GET COMFLAG INFO CONFIRMATION */
#define HIL_DPM_GET_COMFLAG_INFO_CNF HIL_DPM_GET_COMFLAG_INFO_REQ+1

typedef struct HIL_DPM_GET_COMFLAG_INFO_CNF_DATA_Ttag
{
 uint32_t ulAreaIndex; /* area index */
 uint32_t ulNetxComFlag;
 uint32_t ulHostComFlag;
} HIL_DPM_GET_COMFLAG_INFO_CNF_DATA_T;

typedef struct HIL_DPM_GET_COMFLAG_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /* packet header */
 HIL_DPM_GET_COMFLAG_INFO_CNF_DATA_T tData; /* packet data */
} HIL_DPM_GET_COMFLAG_INFO_CNF_T;

Communication Channel services 92/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.4 Read I/O Process Data Image Size
The application can request information about the length of the configured I/O process data image.
The length information is useful to adjust copy functions in terms of the amount of data that are
defined by the fieldbus protocol configuration.

Note: Some of the protocol stacks are able to map additional state information into the I/O
data image. The additional length must be obtained from the extended state block
information (see section Read Extended Status Block on page 88) because this service
does not report the additional length.

Note: If the process data is configured to be input only or output only, the confirmation packet
will report two blocks (input and output) stating that the unused block has a length of 0.

The answer packet returns the offset of the first used byte used in the I/O data image and the
length of configured I/O data.

Get DPM I/O Information request

This packet is used to obtain offset and length of the used I/O data space.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F0C HIL_GET_DPM_IO_INFO_REQ

Table 83: HIL_GET_DPM_IO_INFO_REQ_T – Get DPM I/O Information request

Packet structure reference
/* GET DPM I/O INFORMATION REQUEST */
#define HIL_GET_DPM_IO_INFO_REQ 0x00002F0C

typedef struct HIL_GET_DPM_IO_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_GET_DPM_IO_INFO_REQ_T;

Communication Channel services 93/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get DPM I/O Information confirmation

The confirmation packet returns offset and length of the requested input and the output data area.
The application may receive the packet in a sequenced manner. So the ulExt field has to be
evaluated!

Variable Type Value / Range Description
ulLen uint32_t

4 + (20 * n)
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulId uint32_t From Request Packet Identification as Unique Number
ulSta uint32_t See Below Status / Error Code see Section 6
ulCmd uint32_t 0x00002F0D HIL_GET_DPM_IO_INFO_CNF
ulExt uint32_t

0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

Data
ulNumIOBlock
Info

uint32_t 0 … 10 Number n of Block Definitions in this packet

atIoBlockInfo
[2]

Array of
Structure

 I/O Block definition structure(s)
HIL_DPM_IO_BLOCK_INFO

Table 84: HIL_GET_DPM_IO_INFO_CNF_T – Get DPM I/O Information confirmation

Packet structure reference
/* GET DPM I/O INFORMATION CONFIRMATION */
#define HIL_GET_DPM_IO_INFO_CNF HIL_GET_DPM_IO_INFO_REQ+1

typedef struct HIL_DPM_IO_BLOCK_INFO_Ttag
{
 uint32_t ulSubblockIndex; /* index of sub block */
 uint32_t ulType; /* type of sub block */
 uint16_t usFlags; /* flags of the sub block */
 uint16_t usReserved; /* reserved */
 uint32_t ulOffset; /* offset */
 uint32_t ulLength; /* length of I/O data in bytes */
} HIL_DPM_IO_BLOCK_INFO_T;

typedef struct HIL_GET_DPM_IO_INFO_CNF_DATA_Ttag
{
 uint32_t ulNumIOBlockInfo; /* Number of IO Block Info */
 HIL_DPM_IO_BLOCK_INFO_T atIoBlock[2]; /* Array of I/O Block information */
} HIL_GET_DPM_IO_INFO_CNF_DATA_T;

typedef struct HIL_GET_DPM_IO_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_GET_DPM_IO_INFO_CNF_DATA_T tData; /* packet data */
} HIL_GET_DPM_IO_INFO_CNF_T;

Communication Channel services 94/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Variable Type Value / Range Description
ulSubblockIndex uint32_t 5, 6 Index of sub block

The value identifies the index of the sub block. This field is
only informative and shall not be used by an application.
Value 5 for standard output image.
Value 6 for standard input image.

ulType uint32_t Type of sub block
HIL_BLOCK_* type definitions, see Hil_DualPortMemory.h.

usFlags uint16_t Flags of the sub block
HIL_DIRECTION_* and HIL_TRANSMISSION_TYPE_* type
definitions, see Hil_DualPortMemory.h

usReserved uint16_t Reserved
ulOffset uint32_t 0 Offset

Offset is always 0, even if the application has not configured
any I/O data to offset 0.

ulLength uint32_t Length of I/O data in bytes
Highest offset address of input data or output data used in
the process data image (starting with offset 0, even if the
application has not configured any I/O data to offset 0).

Table 85: Structure HIL_DPM_IO_BLOCK_INFO

Communication Channel services 95/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.5 Channel Initialization
A Channel Initialization affects only the designated communication channel. It forces the protocol
stack to immediately close all network connections and to proceed with a re-initialization. While the
stack is started the configuration settings are evaluated again.

This service may be negatively responded by a protocol stack to indicate that no configuration was
applied e.g. because no configuration is available that can be used or because no valid MAC
address is available.

Note: If the configuration is locked, re-initialization of a channel is not allowed.

In order to avoid race conditions in firmware (e.g. mailbox events generated by firmware are not
recognized by the application), best practice is to use the following flow diagram to perform a
ChannelInit.

Figure 3: Flow chart ChannelInit (Best practise pattern for the host application)

Communication Channel services 96/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Channel Initialization request

The packet is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F80 HIL_CHANNEL_INIT_REQ

Table 86: HIL_CHANNEL_INIT_REQ_T – Channel Initialization request

Packet structure reference
/* CHANNEL INITIALIZATION REQUEST */
#define HIL_CHANNEL_INIT_REQ 0x00002F80

typedef struct HIL_CHANNEL_INIT_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_CHANNEL_INIT_REQ_T;

Channel Initialization confirmation

The channel firmware returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F81 HIL_CHANNEL_INIT_CNF

Table 87: HIL_CHANNEL_INIT_CNF_T – Channel Initialization confirmation

Packet structure reference
/* CHANNEL INITIALIZATION CONFIRMATION */
#define HIL_CHANNEL_INIT_CNF HIL_CHANNEL_INIT_REQ+1

typedef struct HIL_CHANNEL_INIT_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_CHANNEL_INIT_CNF_T;

Communication Channel services 97/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.6 Delete Protocol Stack Configuration
A protocol stack can be configured

 via packet services (Set Configuration packets) or

 via a configuration database file.

The application can use this packet to delete the configuration in the RAM. This service will
overwrite remanent data stored in non-volatile memory with default data.

Configured via packets Configured via configuration database
The configuration stored in RAM will be deleted.
The application has to use the Set Configuration service
again. Otherwise (after a channel initialization) the
protocol stack won’t startup properly due to the missing
configuration.

This service has no effect, if the protocol stack is
configured via a configuration database file. To delete a
configuration file, the standard file functions has to be
used. For details, see section Delete a File page 48.

Table 88: Delete protocol stack configuration

As long as the Configuration Locked flag in ulCommunicationCOS is set, the configuration
cannot be deleted.

Delete Configuration request

The application uses the following packet in order to delete the current configuration of the protocol
stack. The packet is send through the channel mailbox to the protocol stack.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F14 HIL_DELETE_CONFIG_REQ

Table 89: HIL_DELETE_CONFIG_REQ_T – Delete Configuration request

Packet structure reference
/* DELETE CONFIGURATION REQUEST */
#define HIL_DELETE_CONFIG_REQ 0x00002F14

typedef struct HIL_DELETE_CONFIG_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_DELETE_CONFIG_REQ_T;

Communication Channel services 98/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Delete Configuration confirmation

The system returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F15 HIL_DELETE_CONFIG_CNF

Table 90: HIL_DELETE_CONFIG_CNF_T – Delete Configuration confirmation

Packet structure reference
/* DELETE CONFIGURATION CONFIRMATION */
#define HIL_DELETE_CONFIG_CNF HIL_DELETE_CONFIG_REQ+1

typedef struct HIL_DELETE_CONFIG_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_DELETE_CONFIG_CNF_T;

Communication Channel services 99/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.7 Lock / Unlock Configuration
The lock configuration mechanism is used to prevent the configuration settings from being altered
during protocol stack execution. The request packet is passed through the channel mailbox only
and also affects the Configuration Locked flag in the Common Control Block.

The protocol stack modifies this flag in order to signal its current state.

Lock / Unlock Config request

The packet is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F32 HIL_LOCK_UNLOCK_CONFIG_REQ
Data
ulParam uint32_t

0x00000001
0x00000002

Parameter
Lock Configuration
Unlock Configuration

Table 91: HIL_LOCK_UNLOCK_CONFIG_REQ_T – Lock / Unlock Config request

Packet structure reference
/* LOCK – UNLOCK CONFIGURATION REQUEST */
#define HIL_LOCK_UNLOCK_CONFIG_REQ 0x00002F32

typedef struct HIL_LOCK_UNLOCK_CONFIG_REQ_DATA_Ttag
{
 uint32_t ulParam; /* lock/unlock parameter */
} HIL_LOCK_UNLOCK_CONFIG_REQ_DATA_T;

typedef struct HIL_LOCK_UNLOCK_CONFIG_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_LOCK_UNLOCK_CONFIG_REQ_DATA_T tData; /* packet data */
} HIL_LOCK_UNLOCK_CONFIG_REQ_T;

Lock / Unlock Config confirmation

The channel firmware returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F33 HIL_LOCK_UNLOCK_CONFIG_CNF

Table 92: HIL_LOCK_UNLOCK_CONFIG_CNF_T – Lock / Unlock Config confirmation

Packet structure reference
/* LOCK – UNLOCK CONFIGURATION CONFIRMATION */
#define HIL_LOCK_UNLOCK_CONFIG_CNF HIL_LOCK_UNLOCK_CONFIG_REQ+1

typedef struct HIL_LOCK_UNLOCK_CONFIG_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_LOCK_UNLOCK_CONFIG_CNF_T;

Communication Channel services 100/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.8 Start / Stop Communication
The command is used to force a protocol stack to start or stop network communication. It is passed
to the protocol stack through the channel mailbox. Starting and stopping network communication
affects the Bus On flag (see Communication Change of State register).

Start / Stop Communication request

The application uses the following packet in order to start or stop network communication. The
packet is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F30 HIL_START_STOP_COMM_REQ
Data
ulParam uint32_t

0x00000001
0x00000002

Parameter
HIL_COMM_START_CMD
HIL_COMM_STOP_CMD

Table 93: HIL_START_STOP_COMM_REQ_T – Start / Stop Communication request

Packet structure reference
/* START – STOP COMMUNICATION REQUEST */
#define HIL_START_STOP_COMM_REQ 0x00002F30

#define HIL_COMM_START_CMD 0x00000001
#define HIL_COMM_STOP_CMD 0x00000002

typedef struct HIL_START_STOP_COMM_REQ_DATA_Ttag
{
 uint32_t ulParam; /* start/stop communication */
} HIL_START_STOP_COMM_REQ_DATA_T;

typedef struct HIL_START_STOP_COMM_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_START_STOP_COMM_REQ_DATA_T tData; /* packet data */
} HIL_START_STOP_COMM_REQ_T;

Start / Stop Communication confirmation

The firmware returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F31 HIL_START_STOP_COMM_CNF

Table 94: HIL_START_STOP_COMM_CNF_T – Start / Stop Communication confirmation

Packet structure reference
/* START – STOP COMMUNICATION CONFIRMATION */
#define HIL_START_STOP_COMM_CNF HIL_START_STOP_COMM_REQ+1

typedef struct HIL_START_STOP_COMM_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_START_STOP_COMM_CNF_T;

Communication Channel services 101/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.9 Channel Watchdog Time
The communication channel watchdog time can be retrieved and set using the following watchdog
time commands.

4.9.1 Get Channel Watchdog Time

Get Watchdog Time request

The application can use the following packet to read the actual configured watchdog.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F02 HIL_GET_WATCHDOG_TIME_REQ

Table 95: HIL_GET_WATCHDOG_TIME_REQ_T – Get Watchdog Time request

Packet structure reference
/* GET WATCHDOG TIME REQUEST */
#define HIL_GET_WATCHDOG_TIME_REQ 0x00002F02

typedef struct HIL_GET_WATCHDOG_TIME_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_GET_WATCHDOG_TIME_REQ_T;

Get Watchdog Time confirmation

The system channel returns the following packet.

Variable Type Value / Range Description
ulLen uint32_t

4
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F03 HIL_GET_WATCHDOG_TIME_CNF
Data
ulWdgTime uint32_t

0
20 … 0xFFFF

Watchdog Time in milliseconds [ms]
= not set
20 > WDT < 0xFFFF

Table 96: HIL_GET_WATCHDOG_TIME_CNF_T – Get Watchdog Time confirmation

Packet structure reference
/* GET WATCHDOG TIME CONFIRMATION */
#define HIL_GET_WATCHDOG_TIME_CNF HIL_GET_WATCHDOG_TIME_REQ+1

typedef struct HIL_GET_WATCHDOG_TIME_CNF_DATA_Ttag
{
 uint32_t ulWdgTime; /* current watchdog time */
} HIL_GET_WATCHDOG_TIME_CNF_DATA_T;

typedef struct HIL_GET_WATCHDOG_TIME_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_GET_WATCHDOG_TIME_CNF_DATA_T tData; /* packet data */
} HIL_GET_WATCHDOG_TIME_CNF_T;

Communication Channel services 102/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.9.2 Set Watchdog Time
The application can use the following packet to set the watchdog time of a Communication
Channel.

Set Watchdog Time request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F04 HIL_SET_WATCHDOG_TIME_REQ
Data
ulWdgTime uint32_t

0
20 … 65535

Watchdog Time
Watchdog inactive
Watchdog time in milliseconds

Table 97: HIL_SET_WATCHDOG_TIME_REQ_T – Set Watchdog Time request

Packet structure reference
/* SET WATCHDOG TIME REQUEST */
#define HIL_SET_WATCHDOG_TIME_REQ 0x00002F04

typedef struct HIL_SET_WATCHDOG_TIME_REQ_DATA_Ttag
{
 /** watchdog time in milliseconds */
 uint32_t ulWdgTime;
} HIL_SET_WATCHDOG_TIME_REQ_DATA_T;

typedef struct HIL_SET_WATCHDOG_TIME_REQ_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_SET_WATCHDOG_TIME_REQ_DATA_T tData;
} HIL_SET_WATCHDOG_TIME_REQ_T;

Set Watchdog Time confirmation

The system channel returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F05 HIL_SET_WATCHDOG_TIME_CNF

Table 98: HIL_SET_WATCHDOG_TIME_CNF_T – Set Watchdog Time confirmation

Packet structure reference
/* SET WATCHDOG TIME CONFIRMATION */
#define HIL_SET_WATCHDOG_TIME_CNF HIL_SET_WATCHDOG_TIME_REQ+1

typedef struct HIL_SET_WATCHDOG_TIME_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_SET_WATCHDOG_TIME_CNF_T;

Communication Channel services 103/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.10 Channel Component Information
This service provides information about the number of protocol stack components reacheable via a
specific Communication Channel mailbox. The information provided includes

 the component id,

 the remanent data size, and

 version information

for each (protocol stack) component.

In case, the host application requires to store remanent data, the host application has to iterate
over all components that indicate remanent data (ulRemanentDataSize > 0) and generate a
HIL_SET_REMANENT_DATA_REQ with the respective Component ID during the configuration
phase. If the component has no remanent data (ulRemanentDataSize = 0), the application does
not need to use the HIL_SET_REMANENT_DATA_REQ for this component.

For details about remanent data handling, see section Remanent Data on page 137.

Get Component IDs request

The application can use the following packet to read the available components.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x0000AD00 GENAP_GET_COMPONENT_IDS_REQ

Table 99: GENAP_GET_COMPONENT_IDS_REQ_T – Get Component IDs request

Packet structure reference
/*! Get ComponentIDs Request structure. */
typedef HIL_EMPTY_PACKET_T GENAP_GET_COMPONENT_IDS_REQ_T;

Communication Channel services 104/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get Component IDs confirmation

The communication channel returns the following packet containing all components available.

Variable Type Value / Range Description
ulLen uint32_t 4 + n * 16 Packet Data Length (in Bytes)

ulSta uint32_t See section Status and error codes.
ulCmd uint32_t 0x0000AD01 GENAP_GET_COMPONENT_IDS_CNF
Data
ulNumberComponents uint32_t 1 … 16 Number of component details contained in this

confirmation packet.
Data
ulComponentID uint32_t The Component ID of the component.

See file Hil_ComponentID.h for details.
ulRemanentDataSize uint32_t The size of this components remanent data.

0: component has no remanent data.
>0: remanent data size in bytes.

usVersionMajor uint16_t The major version number of this component.
usVersionMinor uint16_t The minor version number of this component.
usVersionBuild uint16_t The build version number of this component.
usVersionRevision uint16_t The revision version number of this component.

Table 100: GENAP_GET_COMPONENT_IDS_CNF_T – Get Component IDs confirmation

Packet structure reference
/*! Component Details data structure */
typedef __HIL_PACKED_PRE struct GENAP_GET_COMPONENT_DETAILS_DATA_Ttag
{
 /*! Component ID */
 uint32_t ulComponentId;
 /*! Remanent Data size in bytes.
 * \note In case of zero the component has no remanent data. */
 uint32_t ulRemanentdataSize;
 /*! Major version */
 uint16_t usVersionMajor;
 /*! Minor version */
 uint16_t usVersionMinor;
 /*! Build version */
 uint16_t usVersionBuild;
 /*! Revision version */
 uint16_t usVersionRevision;
} __HIL_PACKED_POST GENAP_GET_COMPONENT_DETAILS_DATA_T;

/*! Get ComponentIDs Confirmation data structure */
typedef __HIL_PACKED_PRE struct GENAP_GET_COMPONENT_IDS_CNF_DATA_Ttag
{
 /*! Number of components in this confirmation */
 uint32_t ulNumberComponents;
 /*! Array of components registered at GenAP */
 GENAP_GET_COMPONENT_DETAILS_DATA_T atlComponents[];
} __HIL_PACKED_POST GENAP_GET_COMPONENT_IDS_CNF_DATA_T;

/*! Get ComponentIDs Confirmation structure */
typedef __HIL_PACKED_PRE struct GENAP_GET_COMPONENT_IDS_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 GENAP_GET_COMPONENT_IDS_CNF_DATA_T tData;
} __HIL_PACKED_POST GENAP_GET_COMPONENT_IDS_CNF_T;

Communication Channel services 105/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

4.11 Communication channel packet fragmentation
The mechanism of transferring packets in a fragmented manner is used in case the packet (size of
packet header and user data) exceeds the size of the mailbox.

The host application or the protocol stack splits the entire data block to be transferred (with one
service) into smaller fragments. One fragment fits into the mailbox. To transfer all fragments of the
entire data block, several packets are used.

This section describes the packet fragmentation used for Communication Channels and differs (not
compatible) from the packet fragmentation used for the System Channel. Section General packet
fragmentation (page 68) describes the packet fragmentation for the System Channel.

Note: Packet fragmentation is not a default mechanism for all packet commands. The
handling (for using the communication channel) is described in this section and if
supported it is explicitly noted in the packet command definition!

Principle of data fragmentation (packet fragmentation)

Figure 4 shows the fragmentation principle. The host application or the protocol stack splits the
entire data block into smaller parts (fragments). The host application or the protocol stack sends
each fragment with a specific header. These packets fit in a mailbox. The amount of packets
depend on the size of the entire data block and on the size of the mailbox.

Figure 4: Packet fragmentation principle (splitting the entire data block into fragments)

Communication Channel services 106/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Handling of packet reassembly

The host application or the protocol stack can rebuild the entire data block as shown in Figure 6.
Each packet has a unique sequence number and states whether more packet fragments will follow.

Figure 5: Packet fragmentation principle (rebuild entire data block)

Limitations

 The mechanism described here does not offer possibilities for retransmission. One fragment
of data will be transferred after the other. There is no no possibility to retransmit a (previous)
fragment.

 The mechanism described here does not give any information about the total size of original
message to the receiver with the first packet fragment.

Communication Channel services 107/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Packet header used for packet fragmentation

Table 101 lists the variables of the packet header and their use in case of packet fragmentation.

Variable Used for Remark
ulExt  indicate fragmented transfer

 indicate whether more fragments will
follow: first fragment, middle fragment

 indicate whether the service is
complete: last fragment

ulExt:SEQ_MASK is used (Hil_Packet.h)
HIL_PACKET_SEQ_NONE (0x00000000)

HIL_PACKET_SEQ_LAST (0x00000040)

HIL_PACKET_SEQ_FIRST (0x00000080)

HIL_PACKET_SEQ_MIDDLE (0x000000C0)

 indicate the sequence number of
fragmented packet

 the first fragment starts with 0
 wrap around to 0 after 63 was

reached

ulExt:SEQ_NR_MASK is used (Hil_Packet.h)
HIL_PACKET_SEQ_NR_MASK (0x0000003F)

ulDestId  the service requester uses value 0 for
the first fragment

 the service provider defines the value
for ulDestId in the first answer

 the service requester must use this
value of ulDestId for all other packets
(middle and last) of this fragmentation
sequence

Used as "Service identifier" to allow the application using
the same service in parallel.

ulSrc  identifies the service requester of the
service

 the value must be stable for all other
packets (middle and last) of this
fragmentation sequence

May be used by packet receiver to identify the service
requestor.

ulSrcId  the service requester can freely chose
this identifier

 the service requester and service
provider must use this value for all
other packets (middle and last) of this
fragmentation sequence

-

Table 101: Packet header used for packet fragmentation

Fragmented transfer

Packet fragmentation allows the host application to transfer data from the host application to the
stack and allows the stack to transfer data from the stack to the host application. A separate
manual describes all use cases and the fragmentation of requests, indications, confirmations and
responses. For a detailed description about packet fragmentation including sequence diagrams,
see reference [2].

Protocol Stack services 108/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5 Protocol Stack services
Protocol stack services are functions handled by the protocol stacks.

These functions are also fieldbus depending and not all of the fieldbus systems are offering the
same information or functions.

5.1 Function overview
Protocol stack services

Service Command definition Page

Change the Process Data Handshake Configuration

Set the mode how I/O data are synchronized with the host HIL_SET_TRIGGER_TYPE_REQ /

HIL_GET_TRIGGER_TYPE_REQ

or

HIL_SET_HANDSHAKE_CONFIG_REQ

109

Modify Configuration Settings

Set protocol stack configuration parameters to new values HIL_SET_FW_PARAMETER_REQ 117

Network Connection State

Obtain a list of slave which are configured, active or faulted HIL_GET_SLAVE_HANDLE_REQ 121

Obtain a slave connection information HIL_GET_SLAVE_CONN_INFO_REQ 123

Protocol Stack Notifications / Indications

Register an application to be able to receive notifications from a
protocol stack

HIL_REGISTER_APP_REQ 126

Unregister an application from receiving notifications HIL_UNREGISTER_APP_REQ 127

Link Status Changed Service

Activate a link status change notification HIL_LINK_STATUS_CHANGE_IND 128

Perform a Bus Scan

Scan for available devices on the fieldbus devices HIL_BUSSCAN_REQ 130

Get Information about a Fieldbus Device

Read the fieldbus depending information of a device HIL_GET_DEVICE_INFO_REQ 132

Configuration in Run

Verify a modified configuration database file HIL_VERIFY_DATABASE_REQ 134

Activate the modified configuration HIL_ACTIVATE_DATABASE_REQ 136

Remanent Data

Hand over the remanent data to the application to be stored HIL_SET_REMANENT_DATA_REQ 138

Hand over the remanent data to the firmware/stack HIL_STORE_REMAMENT_DATA_IND 141

Table 102: Protocol stack services (function overview)

Protocol Stack services 109/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.2 DPM Handshake Configuration
The host application has the option between two services to modify the netX firmware specific
behavior of the IO handshake and the Sync handshake. Depending on the protocol stack this
service is or is not implemented.

For a description of the handshake modes and the handling in general, see reference [1].

Note: To protect the netX CPU from unexpected overload scenarios, a firmware may have
implemented a protection mechanism. This mechanism will only allow a specific
amount of IO data exchanges per time. If too many IO exchange requests are detected
by the firmware, the firmware will not handle a request directly but instead wait for a
specific amount of time until the request will be handled. This is especially (but not
exclusively) the case for netX 90 and netX 4000-based firmware.

5.2.1 Set Trigger Type
Using this service, the application can configure the data exchange trigger mode for IO handshake
and Sync handshake.

The trigger mode defines the network-specific event when the protocol stack will finish the
synchronization or the provider/consumer data update.

Consumer Data (DPM Input)

The protocol stack finishes the synchronization or the consumer data update:

 immediately in free-run mode: HIL_TRIGGER_TYPE_*_NONE

 in case a new network connection is opened and new data is received (bus cycle
synchronous): HIL_TRIGGER_TYPE_*_RX_DATA_RECEIVED

 in case a defined point of time is reached (time isochronous). The point of time is protocol
stack specific: HIL_TRIGGER_TYPE_*_TIMED_ACTIVATION

Provider Data (DPM Output)

The protocol stack finishes the synchronization or the provider data update:

 immediately in free-run mode: HIL_TRIGGER_TYPE_*_NONE

 in case new data on the bus is required. E.g. the protocol stack will delay the update process
until a new network connection is established (bus cycle synchronous):
HIL_TRIGGER_TYPE_*_READY_FOR_TX_DATA

 in case a defined point of time is reached (time isochronous). The point of time is protocol
stack specific: HIL_TRIGGER_TYPE_*_TIMED_LATCH

The configuration of the consumer and provider data update trigger mode are independent from
each other and can be used individually or combined. However, the synchronization trigger mode
can only be configured unequal to HIL_TRIGGER_TYPE_SYNC_NONE in case both, the consumer
and provider, trigger modes are configured in free-run mode HIL_TRIGGER_TYPE_*_NONE.

In case the application does not use the service, the protocol stack will start in default trigger
mode. The default trigger mode is free-run: HIL_TRIGGER_TYPE_*_NONE.

In case the protocol stack does not support the trigger mode, an error code in the response will be
set to signal an invalid configuration.

Protocol Stack services 110/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Notes

 In case the protocol stack is configured with a trigger mode unequal to free-run, it is protocol
stack specific at which point of time the synchronization or provider/consumer data update is
finished. E.g. the protocol stack will wait for a network connection to be established.

 If supported, the protocol stack accepts the service in bus off mode. It is protocol stack
specific if the service is accepted in bus on mode.

 On channel initialization, the protocol stack keeps the previously configured trigger mode
until active change or device reset.

 In case of a deleted config, the firmware uses the default exchange trigger mode.

 The protocol stack monitors (for the configured data exchange mode) if the host application
handles the handshake as expected. Every time an error symptom occurs, the respective
handshake error counter is incremented. The error counter counts up to the maximal
possible value and saturates.

 In case the trigger mode is configured in default mode, the handshake error counters are set
to 0 and do not count.

 The protocol stack resets the handshake error counter to initial value (zero) after each
channel init.

Protocol Stack services 111/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Set Trigger Type request

This request packet is used by the application to modify the trigger mode of the protocol stack.

Variable Type Value / Range Description
ulLen uint32_t 6 Packet Data Length (in Bytes)
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F90 HIL_SET_TRIGGER_TYPE_REQ
Data
usPdInHskTrig
gerType

uint16_t The Input Handshake Trigger mode to be used.

usPdOutHskTri
ggerType

uint16_t The Output Handshake Trigger mode to be used.

usSyncHskTrig
gerType

uint16_t The Sync Handshake Trigger mode to be used.

Table 103: HIL_SET_TRIGGER_TYPE_REQ_T – Set Trigger Type request

Packet structure reference
#define HIL_SET_TRIGGER_TYPE_REQ 0x00002F90

/*!< No input data synchronization (free-run). */
#define HIL_TRIGGER_TYPE_PDIN_NONE 0x0010
/*!< Input data will be updated when new data was received. (bus cycle synchronous). */
#define HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED 0x0011
/*!< Input data will be updated on time event (time isochronous). */
#define HIL_TRIGGER_TYPE_PDIN_TIMED_ACTIVATION 0x0012

/*!< No output data synchronization (free-run). */
#define HIL_TRIGGER_TYPE_PDOUT_NONE 0x0010
/*!< Output data will be send in next bus cycle. (bus cycle synchronous). */
#define HIL_TRIGGER_TYPE_PDOUT_READY_FOR_TX_DATA 0x0011
/*!< Output data will be delayed until next time event (time isochronous). */
#define HIL_TRIGGER_TYPE_PDOUT_TIMED_LATCH 0x0012

/*!< No sync signal generation */
#define HIL_TRIGGER_TYPE_SYNC_NONE 0x0010
/*!< Generate Sync event when new data was received. */
#define HIL_TRIGGER_TYPE_SYNC_RX_DATA_RECEIVED 0x0011
/*!< Generate Sync event when new data will be send. */
#define HIL_TRIGGER_TYPE_SYNC_READY_FOR_TX_DATA 0x0012
/*!< Generate Sync event when data shall be latched. */
#define HIL_TRIGGER_TYPE_SYNC_TIMED_LATCH 0x0013
/*!< Generate Sync event when data shall be applied. */
#define HIL_TRIGGER_TYPE_SYNC_TIMED_ACTIVATION 0x0014

/*! Set data exchange trigger data. */
typedef __HIL_PACKED_PRE struct HIL_SET_TRIGGER_TYPE_REQ_DATA_Ttag
{
 /*! Consumer data trigger type HIL_TRIGGER_TYPE_PDIN_*. */
 uint16_t usPdInHskTriggerType;
 /*! Provider data trigger type HIL_TRIGGER_TYPE_PDOUT_*. */
 uint16_t usPdOutHskTriggerType;
 /*! Synchronization trigger type HIL_TRIGGER_TYPE_SYNC_*. */
 uint16_t usSyncHskTriggerType;
} __HIL_PACKED_POST HIL_SET_TRIGGER_TYPE_REQ_DATA_T;

/*! Set data exchange trigger request. */
typedef __HIL_PACKED_PRE struct HIL_SET_TRIGGER_TYPE_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_SET_TRIGGER_TYPE_REQ_DATA_T tData; /*!< Packet data. */
} __HIL_PACKED_POST HIL_SET_TRIGGER_TYPE_REQ_T;

Protocol Stack services 112/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Set Trigger Type confirmation

The protocol stack will respond to the request with the following confirmation.

Variable Type Value / Range Description
ulLen uint32_t 0 Packet Data Length (in Bytes)
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F91 HIL_SET_TRIGGER_TYPE_CNF

Table 104: HIL_SET_TRIGGER_TYPE_CNF_T – Set Trigger Type confirmation

Packet structure reference
#define HIL_SET_TRIGGER_TYPE_CNF 0x2F91

/*! Set data exchange trigger confirmation structure. */
typedef HIL_EMPTY_PACKET_T HIL_SET_TRIGGER_TYPE_CNF_T;

5.2.2 Get Trigger Type
Using this service the application can read out

 the trigger mode (handshake behavior) for IO handshake and Sync handshake

 the fastest allowed DPM update time

of a protocol stack related to a specific DPM Communication Channel.

Get Trigger Type request

This service is used by the application to read the current handshake trigger type configured in the
protocol stack.

Variable Type Value / Range Description
ulLen uint32_t 0 Packet Data Length (in Bytes)
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F92 HIL_GET_TRIGGER_TYPE_REQ

Table 105: HIL_GET_TRIGGER_TYPE_REQ_T – Get Trigger Type request

Packet structure reference
#define HIL_GET_TRIGGER_TYPE_REQ 0x2F92

/*! Get data exchange trigger request. */
typedef HIL_EMPTY_PACKET_T HIL_GET_TRIGGER_TYPE_REQ_T;

Protocol Stack services 113/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get Trigger Type confirmation

The protocol stack will respond to the request with the following confirmation.

Variable Type Value / Range Description
ulLen uint32_t 8 Packet Data Length (in Bytes)
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F93 HIL_GET_TRIGGER_TYPE_CNF
Data
usPdInHskTrig
gerType

uint16_t The Input Handshake Trigger mode to be used.

usPdOutHskTri
ggerType

uint16_t The Output Handshake Trigger mode to be used.

usSyncHskTrig
gerType

uint16_t The Sync Handshake Trigger mode to be used.

usMinFreeRunU
pdateInterval

uint16_t The fastest possible update time in case FreeRun mode is
active (in microseconds).

Table 106: HIL_GET_TRIGGER_TYPE_CNF_T – Get Trigger Type confirmation

Packet structure reference
#define HIL_GET_TRIGGER_TYPE_CNF 0x00002F93

/*! Get data exchange trigger data. */
typedef struct HIL_GET_TRIGGER_TYPE_CNF_DATA_Ttag
{
 /*! Input process data trigger type.
 * Value is a type of HIL_TRIGGER_TYPE_PDIN_*. */
 uint16_t usPdInHskTriggerType;
 /*! Output process data trigger type.
 * Value is a type of HIL_TRIGGER_TYPE_PDOUT_*. */
 uint16_t usPdOutHskTriggerType;
 /*! Synchronization trigger type.
 * Value is a type of HIL_TRIGGER_TYPE_SYNC_*. */
 uint16_t usSyncHskTriggerType;
 /*! Minimal provide/consumer data update interval in free-run mode.
 * The application shall ensure in free-run mode to not request faster
 * provider/consumer data update than this interval.
 * Unit of microseconds, default value is 1000us, value 0-31 is not valid. */
 uint16_t usMinFreeRunUpdateInterval;
} HIL_GET_TRIGGER_TYPE_CNF_DATA_T;

/*! Get data exchange trigger confirmation structure. */
typedef struct HIL_GET_TRIGGER_TYPE_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_GET_TRIGGER_TYPE_CNF_DATA_T tData; /*!< Packet data. */
} HIL_GET_TRIGGER_TYPE_CNF_T;

Protocol Stack services 114/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.3 Modify Configuration Settings
The Modify Configuration Settings functionality allows to selectively changing configuration
parameters or settings of a slave protocol stacks which is already configured by a configuration
database file (e.g. config.nxd).

The subsequent modification of configuration settings is particularly useful if the same
configuration database file is used for a number of identical slave devices where each of the
devices needs some individual settings like a unique network address or station name.

Note: Modifying configuration settings is only possible if the protocol stack is configured by a
configuration database file (e.g. config.nxd) and the network startup behavior, given by
the configuration database, is set to Controlled Start of Communication.

Example of parameters which usually have to be modified:

 Station / Network Address

 Baud rate

 Name of Station (PROFINET Device only)

 Device Identification (EtherCAT Slave only)

 Second Station Address (EtherCAT Slave only)

General Configuration Handling

In general, a protocol stack can be configured in 3 different ways.

 SYCON.net configuration database file

 iniBatch database file (via netX Configuration Tool)

 Configuration via Set Configuration Request packets

After power-on reset, a protocol stack first checks if a configuration database file (e.g. config.nxd)
is available. If so, the configuration will be evaluated and no other configuration will be accepted
from this point (see Set Configuration packets). In case a configuration database file could not be
found, the firmware checks next if an iniBatch database file is available and if so, it proceeds in the
same way. If none of the two database files are available, the protocol stack will remain in
unconfigured state and waits until an application starts to send configuration packets to the stack.

To be able to use the modification service, the protocol stack must be in a specific state. It must be
configured by a configuration database file and the network startup behavior in the configuration
database must be set to Controlled Start of Communication. Only in this state, where the protocol
stack waits on a BUS-ON command, he will accept modification commands.

Protocol Stack services 115/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Flowchart

Power-On Reset

iniBatch available?

Finish

SYCON.net Database
(NXD) available?

Yes

No

Wait for Packet Configuration
Wait for „CHANNEL INIT“

Startup Behavior

Yes

No

Read Address Switches
Update Configuration

Modify Configuration Settings

Controlled

Automatic

Modify Configuration?

Awaiting
Application Ready / Bus On

Addr. Switches available?

Yes

No

Yes

No

Figure 6: Flowchart Modify Configuration Settings

Protocol Stack services 116/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Behavior when configuration is locked

The protocol stack returns no error code when the host application tries to modify the configuration
settings while the configuration is locked (see section Lock / Unlock Configuration on page 99).

Behavior while network communication / bus on is set

The protocol stack returns no error code when the host application tries to modify the configuration
settings during network communication or if BUS_ON is set. The new parameter value is not
applied to the current configuration. This behavior is necessary because some fieldbus systems
are required to react when certain configuration parameters change during runtime.

For example, the DeviceNet firmware shall indicate an error status via its LED if a new network
address was assigned during runtime.

Note: During network communication, the Get Parameter command can be used to read the
currently used parameter.

Behavior during channel initialization

During channel initialization (see netX Dual-Port Memory Interface Manual for more details) all
parameters set by the Set Parameter command are discarded and the original from the
configuration database are used again.

Protocol Stack services 117/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.3.1 Set Parameter Data
This service allows a host application to modify certain protocol stack parameters from the current
configuration. This requires that Controlled Start of Communication is set in the configuration
database file and the protocol stack is waiting for the BUS ON / APPLICATION READY command.

Set Parameter request

Depending on the stack implementation the service allows the application to set one or more
parameters in one request. Please consult the protocol stack manual which parameters are
changeable. The packet is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 8 + n Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F86 HIL_SET_FW_PARAMETER_REQ
Data
ulParameterID uint32_t 0 … 0xFFFFFFFF Parameter identifier, see Table 108 and Table 109
ulParameterLen uint32_t n Length of abParameter in byte
abParameter[4] uint8_t m Parameter value, byte array

Table 107: HIL_SET_FW_PARAMETER_REQ_T – Set Parameter request

Packet structure reference
/* SET FIRMWARE PARAMETER REQUEST */
#define HIL_SET_FW_PARAMETER_REQ 0x00002F86

typedef struct HIL_SET_FW_PARAMETER_REQ_DATA_Ttag
{
 uint32_t ulParameterID; /* parameter identifier */
 uint32_t ulParameterLen; /* parameter length */
 uint8_t abParameter[4]; /* parameter */
} HIL_SET_FW_PARAMETER_REQ_DATA_Ttag;

typedef struct HIL_SET_FW_PARAMETER_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_SET_FW_PARAMETER_REQ_DATA_T tData; /* packet data */
} HIL_SET_FW_PARAMETER_REQ_T;

Parameter Identifier ulParameterID

The Parameter Identifier is encoded as outlined below (0xPCCCCNNN).

31 … 28 27 26 25 … 14 13 12 11 10 … 2 1 0
 NNN = unique number
 CCCC = protocol class (see usProtocolClass in the netX Dual-Port Memory Interface Manual)

P = prefix (always 0x3)
Table 108: Encoding Parameter Identifier

Protocol Stack services 118/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

The following parameter identifiers are defined.

Name Code Type Size Description of Parameter
PID_STATION_ADDRESS 0x30000001 uint32_t 4 Byte Station Address

PID_BAUDRATE 0x30000002 uint32_t 4 Byte Baud Rate

PID_PN_NAME_OF_STATION 0x30015001 uint8_t 240 Byte PROFINET: Name of Station

PID_ECS_DEVICE_IDENTIFICAT
ION

0x30009001 uint16_t 4 Byte EtherCAT: Value for Explicit Device
Identification

PID_ECS_SCND_STATION_ADD
RESS

0x30009002 uint16_t 4 Byte EtherCAT: Second Station Address

All other codes are reserved for future use.
Table 109: Defined Parameter Identifier

Set Parameter confirmation

The following packet describes the answer of the Set Parameter Request.

Variable Type Value / Range Description
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F87 HIL_SET_FW_PARAMETER_CNF

Table 110: HIL_SET_FW_PARAMETER_CNF_T – Set Parameter confirmation

Packet structure reference
/* SET FIRMWARE PARAMETER CONFIRMATION */
#define HIL_SET_FW_PARAMETER_CNF HIL_SET_FW_PARAMETER_REQ+1

typedef struct HIL_SET_FW_PARAMETER_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_SET_FW_PARAMETER_CNF_T;

Protocol Stack services 119/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.4 Network Connection State
This section explains how an application can obtain connection status information about slave
devices from a master protocol stack. Hence the packets below are only supported by master
protocol stacks. Slave stacks do not support this function and will rejects the request with an error
code.

5.4.1 Mechanism
The application can request information about the status of network slaves in regards of their cyclic
connection (Non-cyclic connections are not handled in here).

The protocol stack returns a list of handles where each handle represents one slave device.

Note: A handle of a slave is not its MAC ID, station or node address nor an IP address.

The following lists are available.

 List of Configured Slaves
This list represents all network nodes that are configured via a configuration database file or
via packet services.

 List of Active Slaves
This list holds network nodes that are configured (see above) and actively communicating to
the network master.

Note: This is not a ‘Life List’! The list contains only nodes included in the configuration.

 List of Faulted Slaves
This list contains handles of all configured nodes that currently encounter some sort of
connection problem (e.g. disconnected, hardware or configuration problems).

Handling procedure

At first an application has to send a Get Slave Handle Request to obtain the list of slaves.

Note: Handles may change after reconfiguration or power-on reset.

With the handles returned by Get Slave Handle Request, the application can use the Get Slave
Connection Information Request to read the slave’s current network status.

The network status information is always fieldbus specific and to be able to evaluate the slave
information data, the returned information also contains the unique identification number
ulStructID. By using ulStructID the application is able to identify the delivered data
structured.

Identification numbers and structures are described in the corresponding protocol stack interface
manual and corresponding structure definitions can be found in the protocol-specific header files.

In a flawless network (all configured slaves are working properly) the list of configured slaves is
identical to the list of activated slaves and both list containing the same handles. In case of a slave
failure, the corresponding slave handle will be removed from the active slave list and moved to the
faulty slave list while the list of configured slaves remains always constant.

Protocol Stack services 120/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

If an application want to check, if the fieldbus system (all slaves) workings correctly, it has to
compare the List of Configured Slaves against the List of Active Slaves. If both lists are identical,
all slaves are active on the bus.

Faulty slaves are always shown in the List of Faulted Slaves which contains the corresponding
slave handle. Depending on the fieldbus system a faulty slave may or may not appear in the List of
Active Slaves.

The reason why slaves are not working correctly could differ between fieldbus systems. Obvious
causes are:

 Inconsistent configuration between master and slave

 Slave parameter data faults

 Disconnected network cable

Note: Diagnostic functionalities and diagnostic information details are heavily depending on
the fieldbus system. Therefore only the handling to get the information is specified.
The data evaluation must be done by the application using the fieldbus specific
documentations and definitions.

Protocol Stack services 121/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.4.2 Obtain List of Slave Handles

Get Slave Handle request

The host application uses the packet below in order to request a list of slaves depending on the
requested type:

 List of Configured Slaves (HIL_LIST_CONF_SLAVES)

 List of Activated Slaves (HIL_LIST_ACTV_SLAVES)

 List of Faulted Slaves (HIL_LIST_FAULTED_SLAVES)

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F08 HIL_GET_SLAVE_HANDLE_REQ
Data
ulParam uint32_t

0x00000001
0x00000002
0x00000003

Parameter
HIL_LIST_CONF_SLAVES
HIL_LIST_ACTV_SLAVES
HIL_LIST_FAULTED_SLAVES

Table 111: HIL_PACKET_GET_SLAVE_HANDLE_REQ_T – Get Slave Handle request

Packet structure reference
/* GET SLAVE HANDLE REQUEST */
#define HIL_GET_SLAVE_HANDLE_REQ 0x00002F08

/* LIST OF SLAVES */
#define HIL_LIST_CONF_SLAVES 0x00000001
#define HIL_LIST_ACTV_SLAVES 0x00000002
#define HIL_LIST_FAULTED_SLAVES 0x00000003

typedef struct HIL_PACKET_GET_SLAVE_HANDLE_REQ_DATA_Ttag
{
 uint32_t ulParam; /* type of list */
} HIL_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T;

typedef struct HIL_PACKET_GET_SLAVE_HANDLE_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T tData; /* packet data */
} HIL_PACKET_GET_SLAVE_HANDLE_REQ_T;

Protocol Stack services 122/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get Slave Handle confirmation

This is the answer to the HIL_GET_SLAVE_HANDLE_REQ command. The answer packet
contains a list of slave handles. Each handle in the returned list describes a slave device where the
slave state corresponds to the requested list type (configured, activated or faulted).

Variable Type Value / Range Description
ulLen uint32_t

4 * (1 + n)
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F09 HIL_GET_SLAVE_HANDLE_CNF
Data
ulParam uint32_t

0x00000001
0x00000002
0x00000003

Parameter
HIL_LIST_CONF_SLAVES
HIL_LIST_ACTV_SLAVES
HIL_LIST_FAULTED_SLAVES

aulHandle[1] uint32_t 0 … 0xFFFFFFFF Slave Handle, Number of Handles is n

Table 112: HIL_PACKET_GET_SLAVE_HANDLE_CNF_T – Get Slave Handle confirmation

Packet structure reference
/* GET SLAVE HANDLE CONFIRMATION */
#define HIL_GET_SLAVE_HANDLE_CNF HIL_GET_SLAVE_HANDLE_REQ+1

typedef struct HIL_PACKET_GET_SLAVE_HANDLE_CNF_DATA_Ttag
{
 uint32_t ulParam; /* type of list */
 /* list of handles follows here */
 uint32_t aulHandle[1];
} HIL_PACKET_GET_SLAVE_HANDLE_CNF_DATA_T

typedef struct HIL_PACKET_GET_SLAVE_HANDLE_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packer header */
 HIL_PACKET_GET_SLAVE_HANDLE_CNF_DATA_T tData; /* packet data */
} HIL_PACKET_GET_SLAVE_HANDLE_CNF_T;

Protocol Stack services 123/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.4.3 Obtain Slave Connection Information

Get Slave Connection Information request

Using the handles from section 5.4.2, the application can request network status information for
each of the configured network slaves.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F0A HIL_GET_SLAVE_CONN_INFO_REQ
Data
ulHandle uint32_t 0 … 0xFFFFFFFF Slave Handle

Table 113: HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_T – Get Slave Connection Information request

Packet structure reference
/* SLAVE CONNECTION INFORMATION REQUEST */
#define HIL_GET_SLAVE_CONN_INFO_REQ 0x00002F0A

typedef struct HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_DATA_Ttag
{
 uint32_t ulHandle; /* slave handle */
} HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_DATA_T;

typedef struct HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packer header */
 HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_DATA_T tData; /* packet data */
} HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_T;

Protocol Stack services 124/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get Slave Connection Information confirmation

The confirmation contains the fieldbus specific state information of the requested slave defined in
ulHandle.

The identification number ulStructID defines the fieldbus specific information data structure
following the ulStructID element in the packet.

The identification numbers and structures are described in the fieldbus related documentation and
the fieldbus specific C header file.

Variable Type Value / Range Description
ulLen uint32_t

8+sizeof(slave
data)
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK

Otherwise

ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F0B HIL_GET_SLAVE_CONN_INFO_CNF
Data
ulHandle uint32_t 0 … 0xFFFFFFFF Slave Handle
ulStructID uint32_t 0 … 0xFFFFFFFF Structure Identification Number
slave data Structure n Fieldbus Specific Slave Status Information

(Refer to Fieldbus Documentation)
Table 114: HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_T – Get Slave Connection Information conformation

Packet structure reference
/* GET SLAVE CONNECTION INFORMATION CONFIRMATION */
#define HIL_GET_SLAVE_CONN_INFO_CNF HIL_GET_SLAVE_CONN_INFO_REQ+1

typedef struct HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_DATA_Ttag
{
 uint32_t ulHandle; /* slave handle */
 uint32_t ulStructID; /* structure identification number */
 /* fieldbus specific slave status information follows here */
} HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_DATA_T;

typedef struct HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_DATA_T tData; /* packet data */
} HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_T;

Fieldbus Specific Slave Status Information

The structure returned in the confirmation contains at least a field that helps to unambiguously
identify the node. Usually it’s a network address, like MAC ID, IP address or station address. If
applicable, the structure may hold a name string.

For details consult the corresponding protocol stack interface manual.

Protocol Stack services 125/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.5 Protocol Stack Notifications / Indications
Protocol stacks are able to create notifications / indications (in form of “unsolicited data telegrams”)
exchanged via the mailbox system. These notifications / indications are used to inform the
application about state changes and other protocol stack relevant information.

This section describes the method on how to register / unregister an application to the protocol
stack in order to activate and receive notifications / indications via the mailbox system.

Note: Available information (as notifications / indications) depends on the protocol stack.
Please consult the corresponding Protocol API manual.

During the registration of the application, notifications will be automatically activated. From this
point of time, the application must process incoming notification / indication packets. If an
application does not process the notification / indication after registration, the protocol stack
internal service will time-out which can result into network failures.

If an application registers, ulSrc (the Source Queue Handle) of the register command is used to
identify the host application. It is also stored to verify if further registration / unregistration attempts
are valid and ulSrc is copied into every notification / indication packet send to the host application
to help identifying the intended receiver.

Ethernet-based protocol stacks will automatically issue the Link Status Changed Service (see page
128) after the application has registered.

Note: Only one application is able to register with the protocol stack at a time. Further register
attempts in parallel will be rejected by the protocol stack.

Protocol Stack services 126/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.5.1 Register Application

Register Application request

The application uses the following packet in order to register itself to a protocol stack. The packet
is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulSrc uint32_t n Unique application identifier
ulCmd uint32_t 0x00002F10 HIL_REGISTER_APP_REQ

Table 115: HIL_REGISTER_APP_REQ_T – Register Application request

Packet structure reference
/* REGISTER APPLICATION REQUEST */
#define HIL_REGISTER_APP_REQ 0x00002F10

typedef struct HIL_REGISTER_APP_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_REGISTER_APP_REQ_T;

Register Application confirmation

The system channel returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F11 HIL_REGISTER_APP_CNF

Table 116: HIL_REGISTER_APP_CNF_T – Register Application confirmation

Packet structure reference
/* REGISTER APPLICATION CONFIRMATION */
#define HIL_REGISTER_APP_CNF HIL_REGISTER_APP_REQ+1

typedef struct HIL_REGISTER_APP_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_REGISTER_APP_CNF_T;

Protocol Stack services 127/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.5.2 Unregister Application

Unregister Application request

The application uses the following packet in order to undo the registration from above. The packet
is send through the channel mailbox.

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulSrc uint32_t n used during registration
ulCmd uint32_t 0x00002F12 HIL_UNREGISTER_APP_REQ

Table 117: HIL_UNREGISTER_APP_REQ_T – Unregister Application request

Packet structure reference
/* UNREGISTER APPLICATION REQUEST */
#define HIL_UNREGISTER_APP_REQ 0x00002F12

typedef struct HIL_UNREGISTER_APP_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_UNREGISTER_APP_REQ_T;

Unregister Application confirmation

The system channel returns the following packet.

Variable Type Value / Range Description
ulSta uint32_t See Below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F13 HIL_UNREGISTER_APP_CNF

Table 118: HIL_UNREGISTER_APP_CNF_T – Unregister Application confirmation

Packet structure reference
/* UNREGISTER APPLICATION CONFIRMATION */
#define HIL_UNREGISTER_APP_CNF HIL_UNREGISTER_APP_REQ+1

typedef struct HIL_UNREGISTER_APP_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_UNREGISTER_APP_CNF_T;

Protocol Stack services 128/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.6 Link Status Changed Service
This service is used to inform an application about link status changes of a protocol stack. In order
to receive the notifications, the application has to register itself at the protocol stack (see 5.5
Protocol Stack Notifications / Indications).

An Ethernet-based protocol stack will automatically generate this indication after the application
has used the Register Application service (page 126).

This command depends on the used protocol stack, see corresponding Protocol API manual if this
command is supported.

Link Status Change indication

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 32 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F8A HIL_LINK_STATUS_CHANGE_IND
Data
atLinkData[2] Structure Link Status Information

Structure Information: HIL_LINK_STATUS_T
ulPort uint32_t Number of the port
fIsFullDuplex uint32_t Non-zero if full duplex is used
fIsLinkUp uint32_t Non-zero if link is up
ulSpeed uint32_t

0
10
100

Speed of the link
No link
10MBit
100Mbit

Table 119: HIL_LINK_STATUS_CHANGE_IND_T – Link Status Change indication

Packet structure reference
/* LINK STATUS CHANGE INDICATION */
#define HIL_LINK_STATUS_CHANGE_IND 0x00002F8A

typedef struct HIL_LINK_STATUS_Ttag
{
 uint32_t ulPort; /*!< Port the link status is for */
 uint32_t fIsFullDuplex; /*!< If a full duplex link is available on this port
*/
 uint32_t fIsLinkUp; /*!< If a link is available on this port */
 uint32_t ulSpeed; /*!< Speed of the link \n\n
 \valueRange
 0: No link \n
 10: 10MBit \n
 100: 100MBit \n */
} HIL_LINK_STATUS_T;

typedef struct HIL_LINK_STATUS_CHANGE_IND_DATA_Ttag
{
 HIL_LINK_STATUS_T atLinkData[2];
} HIL_LINK_STATUS_CHANGE_IND_DATA_T;

typedef struct HIL_LINK_STATUS_CHANGE_IND_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_LINK_STATUS_CHANGE_IND_DATA_T tData;
} HIL_LINK_STATUS_CHANGE_IND_T;

Protocol Stack services 129/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Link Status Change response

Variable Type Value / Range Description
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F8B HIL_LINK_STATUS_CHANGE_RES

Table 120: HIL_LINK_STATUS_CHANGE_RES_T – Link Status Change response

Packet structure reference
/* LINK STATUS CHANGE RESPONSE */
#define HIL_LINK_STATUS_CHANGE_RES HIL_LINK_STATUS_CHANGE_IND+1

typedef HIL_PACKET_HEADER HIL_LINK_STATUS_CHANGE_RES_T;

Protocol Stack services 130/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.7 Perform a Bus Scan
Perform a bus scan and retrieve the scan results. This services in only offered by master protocol
stacks.

Note: This command depends on the used protocol stack. Consult the corresponding
protocol stack interface manual if the command is supported and for more information.

Bus Scan request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F22 HIL_BUSSCAN_REQ
Data
ulAction uint32_t

0x01
0x02
0x03

Action to perform
HIL_BUSSCAN_CMD_START
HIL_BUSSCAN_CMD_STATUS
HIL_BUSSCAN_CMD_ABORT

Table 121: HIL_BUSSCAN_REQ_T – Bus Scan request

Packet structure reference
/* BUS SCAN REQUEST */
#define HIL_BUSSCAN_REQ 0x00002F22

#define HIL_BUSSCAN_CMD_START 0x01
#define HIL_BUSSCAN_CMD_STATUS 0x02
#define HIL_BUSSCAN_CMD_ABORT 0x03

typedef struct HIL_BUSSCAN_REQ_DATA_Ttag
{
 uint32_t ulAction;
} HIL_BUSSCAN_REQ_DATA_T;

typedef struct HIL_BUSSCAN_REQ_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_BUSSCAN_REQ_DATA_T tData;
} HIL_BUSSCAN_REQ_T;

Protocol Stack services 131/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Bus Scan confirmation

Variable Type Value / Range Description
ulLen uint32_t

12
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F23 HIL_BUSSCAN_CNF
Data
ulMaxProgress uint32_t n Number of devices from the configuration
ulActProgress uint32_t m Number of devices found
abDevice
List[4]

uint8_t List of available devices on the fieldbus system

Table 122: HIL_BUSSCAN_CNF_T – Bus Scan confirmation

Packet structure reference
/* BUS SCAN CONFIRMATION */
#define HIL_BUSSCAN_CNF HIL_BUSSCAN_REQ+1

typedef struct HIL_BUSSCAN_CNF_DATA_Ttag
{
 uint32_t ulMaxProgress;
 uint32_t ulActProgress;
 uint8_t abDeviceList[4];
} HIL_BUSSCAN_CNF_DATA_T;

typedef struct HIL_BUSSCAN_CNF_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_BUSSCAN_CNF_DATA_T tData;
} HIL_BUSSCAN_CNF_T;

Protocol Stack services 132/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.8 Get Information about a Fieldbus Device
Read the available information about a specific node on the fieldbus system. This services in only
offered by master protocol stacks.

Note: This command depends on the used protocol stack. Consult the corresponding
protocol stack interface manual if the command is supported and for more information.

Get Device Info request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulCmd uint32_t 0x00002F24 HIL_GET_DEVICE_INFO_REQ
Data
ulDeviceIdx uint32_t n Fieldbus specific device identifier

Table 123: HIL_GET_DEVICE_INFO_REQ_T – Get Device Info request

Packet structure reference
/* GET DEVICE INFO REQUEST */
#define HIL_GET_DEVICE_INFO_REQ 0x00002F24

typedef struct HIL_GET_DEVICE_INFO_REQ_DATA_Ttag
{
 uint32_t ulDeviceIdx;
} HIL_GET_DEVICE_INFO_REQ_DATA_T;

typedef struct HIL_GET_DEVICE_INFO_REQ_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_GET_DEVICE_INFO_REQ_DATA_T tData;
} HIL_GET_DEVICE_INFO_REQ_T;

Protocol Stack services 133/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Get Device Info confirmation

Variable Type Value / Range Description
ulLen uint32_t

8 + n
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F25 HIL_GET_DEVICE_INFO_CNF
Data
ulDeviceIdx uint32_t n Identifier of device
ulStructId uint32_t m Identifier of structure type
 Structure Fieldbus specific data structure

Table 124: HIL_GET_DEVICE_INFO_CNF_T – Get Device Info confirmation

Packet structure reference
/* GET DEVICE INFO CONFIRMATION */
#define HIL_GET_DEVICE_INFO_CNF HIL_GET_DEVICE_INFO_REQ+1

typedef struct HIL_GET_DEVICE_INFO_CNF_DATA_Ttag
{
 uint32_t ulDeviceIdx;
 uint32_t ulStructId;
 /* uint8_t tStruct; Fieldbus specific structure */
} HIL_GET_DEVICE_INFO_CNF_DATA_T;

typedef struct HIL_GET_DEVICE_INFO_CNF_Ttag
{
 HIL_PACKET_HEADER tHead;
 HIL_GET_DEVICE_INFO_CNF_DATA_T tData;
} HIL_GET_DEVICE_INFO_CNF_T;

Protocol Stack services 134/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.9 Configuration in Run
Configuration in Run is a fieldbus and protocol stack specific function which should allow the
modification of the master fieldbus configuration while the configuration is active and without
stopping the already active bus communication. The functions only works if a configuration
database file is used to configure the master device.

The modification of configuration data during run-time has some specific limitations. Therefore the
modified configuration database must first be downloaded to the master device. Afterwards the
master is requested to check if the new configuration database can be used without disturbing the
current active devices on the fieldbus system (e.g. adding a new device online).

Note: This command depends on the used protocol stack and not all fieldbus systems are
supporting Configuration in Run.
Consult the corresponding protocol stack interface manual if this function is supported
and about additional information on how to use the function.

5.9.1 Verify Configuration Database
This packet informs the master, that a new configuration database file was downloaded and
available to be verified.

Verify Database request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F82 HIL_VERIFY_DATABASE_REQ

Table 125: HIL_VERIFY_DATABASE_REQ_T – Verify Database request

Packet structure reference
/* VERIFY DATABASE REQUEST */
#define HIL_VERIFY_DATABASE_REQ 0x00002F82

typedef struct HIL_VERIFY_DATABASE_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_VERIFY_DATABASE_REQ_T;

Protocol Stack services 135/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Verify Database confirmation

Variable Type Value / Range Description
ulLen uint32_t

116
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F83 HIL_VERIFY_DATABASE_CNF
Data
tNewSlaves Structure n Addresses of new slaves which have to be configured.
tDeactivated
Slaves

Structure n Addresses of slaves which are deactivated or cannot be
configured.

tChanged
Slaves

Structure n Addresses of slaves whose configuration has been changed.

tUnchanged
Slaves

Structure n Addresses of slaves whose configuration has not been
changed.

tImpossible
SlaveChanges

Structure n Addresses of slaves whose configuration is not valid.

tMaster
Changes

Structure n Field bus changes and status.

Table 126: HIL_VERIFY_DATABASE_CNF_T – Verify Database confirmation

Packet structure reference
/* VERIFY DATABASE CONFIRMATION */
#define HIL_VERIFY_DATABASE_CNF HIL_VERIFY_DATABASE_REQ+1

typedef struct HIL_VERIFY_SLAVE_DATABASE_LIST_Ttag
{
 uint32_t ulLen;
 uint8_t abData[16];
} HIL_VERIFY_SLAVE_DATABASE_LIST_T;

typedef struct HIL_VERIFY_MASTER_DATABASE_Ttag
{
 uint32_t ulMasterSettings; /* field bus independent changes */
 uint32_t ulMasterStatus; /* field bus specific status */
 uint32_t ulReserved[2];
} HIL_VERIFY_MASTER_DATABASE_T;

#define HIL_CIR_MST_SET_STARTUP 0x00000001
#define HIL_CIR_MST_SET_WATCHDOG 0x00000002
#define HIL_CIR_MST_SET_STATUSOFFSET 0x00000004
#define HIL_CIR_MST_SET_BUSPARAMETER 0x00000008

typedef struct HIL_VERIFY_DATABASE_CNF_DATA_Ttag
{
 HIL_VERIFY_SLAVE_DATABASE_LIST_T tNewSlaves;
 HIL_VERIFY_SLAVE_DATABASE_LIST_T tDeactivatedSlaves;
 HIL_VERIFY_SLAVE_DATABASE_LIST_T tChangedSlaves;
 HIL_VERIFY_SLAVE_DATABASE_LIST_T tUnchangedSlaves;
 HIL_VERIFY_SLAVE_DATABASE_LIST_T tImpossibleSlaveChanges;
 HIL_VERIFY_MASTER_DATABASE_T tMasterChanges;
} HIL_VERIFY_DATABASE_CNF_DATA_T;

typedef struct HIL_VERIFY_DATABASE_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_VERIFY_DATABASE_CNF_DATA_T tData; /* packet data */
} HIL_VERIFY_DATABASE_CNF_T;

Protocol Stack services 136/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.9.2 Activate Configuration Database
This packet indicates the master to activate the new configuration.

Activate Database request

Variable Type Value / Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F84 HIL_ACTIVATE_DATABASE_REQ

Table 127: HIL_ACTIVATE_DATABASE_REQ_T – Activate Database request

Packet structure reference
/* ACTIVATE DATABASE REQUEST */
#define HIL_ACTIVATE_DATABASE_REQ 0x00002F84

typedef struct HIL_ACTIVATE_DATABASE_REQ_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
} HIL_ACTIVATE_DATABASE_REQ_T;

Activate Database confirmation

Variable Type Value / Range Description
ulLen uint32_t

16
0

Packet Data Length (in Bytes)
If ulSta = SUCCESS_HIL_OK
Otherwise

ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F85 HIL_ACTIVATE_DATABASE_CNF
Data
abSlvSt[16] uint8_t n State of the Slaves after Configuration

Table 128: HIL_ACTIVATE_DATABASE_CNF_T – Activate Database confirmation

Packet structure reference
/* ACTIVATE DATABASE CONFIRMATION */
#define HIL_ACTIVATE_DATABASE_CNF HIL_ACTIVATE_DATABASE_REQ+1

typedef struct HIL_ACTIVATE_DATABASE_CNF_DATA_Ttag
{
 uint8_t abSlvSt[16]; /* State of the slaves after configuration */
} HIL_ACTIVATE_DATABASE_CNF_DATA_T;

typedef struct HIL_ACTIVATE_DATABASE_CNF_Ttag
{
 HIL_PACKET_HEADER tHead; /* packet header */
 HIL_ACTIVATE_DATABASE_CNF_DATA_T tData;
} HIL_ACTIVATE_DATABASE_CNF_T;

Protocol Stack services 137/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.10 Remanent Data
Remanent data is a term used for configuration and parameterization data that a device must store
persistently. This means that the data

 must be stored in a non-volatile memory and

 must be applied / used after a power cycle of the device.

When you design your application, you have to determine whether

 the firmware/stack or

 the application

stores the remanent data.

In case the application store remanent data, this section is relevant for the design of your
application.

Application stores the remanent data

A protocol stack contains several components. One or more components can require remanent
data. The application has to use the Channel Component Information service (page 103) to obtain
the information whether a component requires remanent data and how many.

The following subsections describe the services:

 Store Remanant Data service: A component uses this service to hand over to the application
the remanent data to be stored during runtime.

 Set Remanant Data service: The application has to use this service after power on to hand
over the remanent data to the component.

The application has to use these two services for all components that need remanat data.

In case the application does not provide remanent data that a component requires, the component
will not operate. If this happens during a device certification, the certification will fail.

Protocol Stack services 138/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.10.1 Set Remanent Data
The application has to use this service after power on to hand over the remanent data to all
components of a protocol stack. Therefore, the application is required to use this service every
time on startup.

If the application cannot provide (valid) remanent data for the specific component of the protocol
stack, e.g. in case the system starts up for the very first time, the application must send this service
with the correct Component ID but with remanent data size set to zero. Otherwise, it is not ensured
that the firmware starts up properly.

The protocol stack will wait for both services

 Set Remanent Data and

 Set Configuration Request

The application then has to activate the configuration using a Channel Init.

Figure 7 shows the sequence for the application during start-up phase.

Figure 7: Set Remanent Data (during configuration phase)

This service supports packet fragmentation (see section Communication channel packet
fragmentation on page 105).

The application has to send this request packet on every startup to the protocol stack.

The application must send the last stored remanent a component has reported (without matching
the size).

Protocol Stack services 139/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Set Remanent Data request

Variable Type Value / Range Description
ulLen uint32_t 4 +n Packet Data Length (in Bytes)

n is the number of bytes of remanent data the application
wants to set in protocol stack (n may be 0 in case no data is
known by application).

ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F8C HIL_SET_REMANENT_DATA_REQ
Data
ulComponentId uint32_t Component ID of the protocol stack component for which the

remanent data is set by application.
abData[] uint8_t The remanent data as byte array.

Table 129: HIL_SET_REMANENT_DATA_REQ_T – Set Remanent Data request

Packet structure reference
#define HIL_SET_REMANENT_DATA_REQ 0x00002F8C

/*! Set remanent data request data. */
typedef __HIL_PACKED_PRE struct HIL_SET_REMANENT_DATA_REQ_DATA_Ttag
{
 /*! Unique component identifier HIL_COMPONENT_ID_*. */
 uint32_t ulComponentId;
 /*! Remanent data buffer. */
 uint8_t abData[__HIL_VARIABLE_LENGTH_ARRAY];
} __HIL_PACKED_POST HIL_SET_REMANENT_DATA_REQ_DATA_T;

/*! Set remanent data request. */
typedef __HIL_PACKED_PRE struct HIL_SET_REMANENT_DATA_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_SET_REMANENT_DATA_REQ_DATA_T tData; /*!< Packet data. */
} __HIL_PACKED_POST HIL_SET_REMANENT_DATA_REQ_T;

Protocol Stack services 140/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Set Remanent Data confirmation

The protocol stack will respond to the request with the following confirmation.

Variable Type Value / Range Description
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulSta uint32_t See below Status / Error Code, see Section 6
ulCmd uint32_t 0x00002F8D HIL_SET_REMANENT_DATA_CNF
Data
ulComponentId uint32_t Component ID of the protocol stack for which the remanent

data was just set by application.
Table 130: HIL_SET_REMANENT_DATA_CNF_T – Set Remanent Data configuration

Packet structure reference
#define HIL_SET_REMANENT_DATA_CNF 0x2F8D

/*! Set remanent data confirmation data. */
typedef __HIL_PACKED_PRE struct HIL_SET_REMANENT_DATA_CNF_DATA_Ttag
{
 /*! Unique component identifier HIL_COMPONENT_ID_*. */
 uint32_t ulComponentId;
} __HIL_PACKED_POST HIL_SET_REMANENT_DATA_CNF_DATA_T;

/*! Set remanent data confirmation. */
typedef __HIL_PACKED_PRE struct HIL_SET_REMANENT_DATA_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_SET_REMANENT_DATA_CNF_DATA_T tData; /*!< Packet data. */
} __HIL_PACKED_POST HIL_SET_REMANENT_DATA_CNF_T;

Protocol Stack services 141/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

5.10.2 Store Remanent Data
This packet indicates the availability of new remanent data to the application. The application must
store the new data persistently (related to the protocol stack component).

During runtime and depending on network events, a stack component indicate new remanent data
to the application multiple times. The application has to compare the remanent data with the last
stored remanent data in order to avoid writing the same data again and again. It is up to the
application to consider the wear of the storage device.

Due to update of a component, the application has to be able to store remanent data in case the
reported remanent data size has changed. The application has to send the response after the
application has stored all data persistently. The response must always contain the Component ID,
also in case of an error. Depending on the component, a response to the network may be
generated by the component, even if the application has not answered yet.

Note: The application has to send the response packet synchronously to remanent data storage,
i.e. after all data has been written to the storage device.

Store Remanent Data indication

Variable Type Value / Range Description
ulLen uint32_t 4 + n Packet Data Length (in Bytes)

n = number of remanent data bytes
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL
ulCmd uint32_t 0x00002F8E HIL_STORE_REMAMENT_DATA_IND
Data
ulComponentId uint32_t Component ID of the protocol stack which indicates the

remanent data to application.
For values, see file Hil_ComponentID.h

abData[] uint8_t The remanent data as byte array.
Table 131: HIL_STORE_REMANENT_DATA_IND_T – Store Remanent Data indication

Packet structure reference
#define HIL_STORE_REMANENT_DATA_IND 0x00002F8E

/*! Store remanent indication data. */
typedef __HIL_PACKED_PRE struct HIL_STORE_REMANENT_DATA_IND_DATA_Ttag
{
 /*! Unique component identifier HIL_COMPONENT_ID_*. */
 uint32_t ulComponentId;
 /*! Remanent data buffer. */
 uint8_t abData[__HIL_VARIABLE_LENGTH_ARRAY];
} __HIL_PACKED_POST HIL_STORE_REMANENT_DATA_IND_DATA_T;

/*! Store remanent indication. */
typedef __HIL_PACKED_PRE struct HIL_STORE_REMANENT_DATA_IND_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_STORE_REMANENT_DATA_IND_DATA_T tData; /*!< Packet data. */
} __HIL_PACKED_POST HIL_STORE_REMANENT_DATA_IND_T;

Protocol Stack services 142/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Store Remenant Data response

Variable Type Value / Range Description
ulLen uint32_t 4 Packet Data Length (in Bytes)
ulSta uint32_t Status / Error Code, see section 6.
ulCmd uint32_t 0x00002F8F HIL_STORE_REMANENT_DATA_RES
Data
ulComponentId uint32_t The application has to use the same value from the indication.

Table 132: HIL_STORE_REMANENT_DATA_RES_T – Store Remanent Data response

Packet structure reference
#define HIL_STORE_REMANENT_DATA_RES 0x2F8F

/*! Store remanent response data. */
typedef __HIL_PACKED_PRE struct HIL_STORE_REMANENT_DATA_RES_DATA_Ttag
{
 /*! Unique component identifier HIL_COMPONENT_ID_*. */
 uint32_t ulComponentId;
} __HIL_PACKED_POST HIL_STORE_REMANENT_DATA_RES_DATA_T;

/*! Store remanent response. */
typedef __HIL_PACKED_PRE struct HIL_STORE_REMANENT_DATA_RES_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 HIL_STORE_REMANENT_DATA_RES_DATA_T tData; /*!< Packet data. */
} __HIL_PACKED_POST HIL_STORE_REMANENT_DATA_RES_T;

Status and error codes 143/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

6 Status and error codes
The following status and error codes may be returned in ulSta of the packet. Not all of the codes
outlined below are supported by a specific protocol stack.

6.1 Packet error codes
Value Definition / Description
0x00000000 SUCCESS_HIL_OK

Success, Status Okay
0xC0000001 ERR_HIL_FAIL

Fail
0xC0000002 ERR_HIL_UNEXPECTED

Unexpected
0xC0000003 ERR_HIL_OUTOFMEMORY

Out Of Memory
0xC0000004 ERR_HIL_UNKNOWN_COMMAND

Unknown Command

0xC0000005 ERR_HIL_UNKNOWN_DESTINATION
Unknown Destination

0xC0000006 ERR_HIL_UNKNOWN_DESTINATION_ID
Unknown Destination ID

0xC0000007 ERR_HIL_INVALID_PACKET_LEN
Invalid Packet Length

0xC0000008 ERR_HIL_INVALID_EXTENSION
Invalid Extension

0xC0000009 ERR_HIL_INVALID_PARAMETER
Invalid Parameter

0xC000000C ERR_HIL_WATCHDOG_TIMEOUT
Watchdog Timeout

0xC000000D ERR_HIL_INVALID_LIST_TYPE
Invalid List Type

0xC000000E ERR_HIL_UNKNOWN_HANDLE
Unknown Handle

0xC000000F ERR_HIL_PACKET_OUT_OF_SEQ
Out Of Sequence

0xC0000010 ERR_HIL_PACKET_OUT_OF_MEMORY
Out Of Memory

0xC0000011 ERR_HIL_QUE_PACKETDONE
Queue Packet Done

0xC0000012 ERR_HIL_QUE_SENDPACKET
Queue Send Packet

0xC0000013 ERR_HIL_POOL_PACKET_GET
Pool Packet Get

0xC0000015 ERR_HIL_POOL_GET_LOAD
Pool Get Load

0xC000001A ERR_HIL_REQUEST_RUNNING
Request Already Running

0xC0000100 ERR_HIL_INIT_FAULT
Initialization Fault

0xC0000101 ERR_HIL_DATABASE_ACCESS_FAILED
Database Access Failed

0xC0000119 ERR_HIL_NOT_CONFIGURED
Not Configured

Status and error codes 144/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Value Definition / Description
0xC0000120 ERR_HIL_CONFIGURATION_FAULT

Configuration Fault
0xC0000121 ERR_HIL_INCONSISTENT_DATA_SET

Inconsistent Data Set
0xC0000122 ERR_HIL_DATA_SET_MISMATCH

Data Set Mismatch
0xC0000123 ERR_HIL_INSUFFICIENT_LICENSE

Insufficient License
0xC0000124 ERR_HIL_PARAMETER_ERROR

Parameter Error
0xC0000125 ERR_HIL_INVALID_NETWORK_ADDRESS

Invalid Network Address
0xC0000126 ERR_HIL_NO_SECURITY_MEMORY

No Security Memory
0xC0000140 ERR_HIL_NETWORK_FAULT

Network Fault
0xC0000141 ERR_HIL_CONNECTION_CLOSED

Connection Closed
0xC0000142 ERR_HIL_CONNECTION_TIMEOUT

Connection Timeout
0xC0000143 ERR_HIL_LONELY_NETWORK

Lonely Network
0xC0000144 ERR_HIL_DUPLICATE_NODE

Duplicate Node
0xC0000145 ERR_HIL_CABLE_DISCONNECT

Cable Disconnected
0xC0000180 ERR_HIL_BUS_OFF

Network Node Bus Off
0xC0000181 ERR_HIL_CONFIG_LOCKED

Configuration Locked
0xC0000182 ERR_HIL_APPLICATION_NOT_READY

Application Not Ready
0xC0000204 ERR_HIL_INVALID_DATA_LENGTH

Invalid data length
0xC0001002 ERR_HIL_RESOURCE_IN_USE
0xC0001003 ERR_HIL_NO_MORE_RESOURCES
0xC0001008 ERR_HIL_CRC
0xC0001101 ERR_HIL_DPM_CHANNEL_INVALID
0xC0001010 ERR_HIL_DRV_INVALID_RESOURCE
0xC0001143 ERR_HIL_NAME_INVALID
0xC0001144 ERR_HIL_UNEXPECTED_BLOCK_SIZE
0xC0001153 ERR_HIL_READ

Failed to read from file/area
0xC0001154 ERR_HIL_WRITE

Failed to write from file/area
0xC0001157 ERR_HIL_VERIFICATION

Error during verification of firmware
0xC0001166 ERR_HIL_ERASE

Failed to erase file/directory/flash
0xC0001167 ERR_HIL_OPEN

Failed to open file/directory

Status and error codes 145/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Value Definition / Description
0xC0001168 ERR_HIL_CLOSE

Failed to close file/directory
0xC0001169 ERR_HIL_CREATE

Failed to create file/directory
0xC0001170 ERR_HIL_MODIFY

Failed to modify file/directory
0xC000DEAD ERR_HIL_FIRMWARE_CRASHED

The firmware has crashed and the exception handler is running
0xC002000C ERR_HIL_TIMER_APPL_PACKET_SENT

Timer App Packet Sent
0xC02B0001 ERR_HIL_QUE_UNKNOWN

Unknown Queue
0xC02B0002 ERR_HIL_QUE_INDEX_UNKNOWN

Unknown Queue Index
0xC02B0003 ERR_HIL_TASK_UNKNOWN

Unknown Task
0xC02B0004 ERR_HIL_TASK_INDEX_UNKNOWN

Unknown Task Index
0xC02B0005 ERR_HIL_TASK_HANDLE_INVALID

Invalid Task Handle
0xC02B0006 ERR_HIL_TASK_INFO_IDX_UNKNOWN

Unknown Index
0xC02B0007 ERR_HIL_FILE_XFR_TYPE_INVALID

Invalid Transfer Type
0xC02B0008 ERR_HIL_FILE_REQUEST_INCORRECT

Invalid File Request
0xC02B000E ERR_HIL_TASK_INVALID

Invalid Task
0xC02B001D ERR_HIL_SEC_FAILED

Security EEPROM Access Failed
0xC02B001E ERR_HIL_EEPROM_DISABLED

EEPROM Disabled
0xC02B001F ERR_HIL_INVALID_EXT

Invalid Extension
0xC02B0020 ERR_HIL_SIZE_OUT_OF_RANGE

Block Size Out Of Range
0xC02B0021 ERR_HIL_INVALID_CHANNEL

Invalid Channel
0xC02B0022 ERR_HIL_INVALID_FILE_LEN

Invalid File Length
0xC02B0023 ERR_HIL_INVALID_CHAR_FOUND

Invalid Character Found
0xC02B0024 ERR_HIL_PACKET_OUT_OF_SEQ

Packet Out Of Sequence
0xC02B0025 ERR_HIL_SEC_NOT_ALLOWED

Not Allowed In Current State
0xC02B0026 ERR_HIL_SEC_INVALID_ZONE

Security EEPROM Invalid Zone
0xC02B0028 ERR_HIL_SEC_EEPROM_NOT_AVAIL

Security EEPROM Not Available
0xC02B0029 ERR_HIL_SEC_INVALID_CHECKSUM

Security EEPROM Invalid Checksum
0xC02B002A ERR_HIL_SEC_ZONE_NOT_WRITEABLE

Security EEPROM Zone Not Writeable

Status and error codes 146/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Value Definition / Description
0xC02B002B ERR_HIL_SEC_READ_FAILED

Security EEPROM Read Failed
0xC02B002C ERR_HIL_SEC_WRITE_FAILED

Security EEPROM Write Failed
0xC02B002D ERR_HIL_SEC_ACCESS_DENIED

Security EEPROM Access Denied
0xC02B002E ERR_HIL_SEC_EEPROM_EMULATED

Security EEPROM Emulated
0xC02B0038 ERR_HIL_INVALID_BLOCK

Invalid Block
0xC02B0039 ERR_HIL_INVALID_STRUCT_NUMBER

Invalid Structure Number
0xC02B4352 ERR_HIL_INVALID_CHECKSUM

Invalid Checksum
0xC02B4B54 ERR_HIL_CONFIG_LOCKED

Configuration Locked
0xC02B4D52 ERR_HIL_SEC_ZONE_NOT_READABLE

Security EEPROM Zone Not Readable
Table 133: Status and error codes

Appendix 147/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

7 Appendix
7.1 List of figures
Figure 1: Flowchart File Download 36
Figure 2: Flowchart File Upload 42
Figure 3: Flow chart ChannelInit (Best practise pattern for the host application) 95
Figure 4: Packet fragmentation principle (splitting the entire data block into fragments) 105
Figure 5: Packet fragmentation principle (rebuild entire data block) 106
Figure 6: Flowchart Modify Configuration Settings 115
Figure 7: Set Remanent Data (during configuration phase) 138

7.2 List of tables
Table 1: List of revisions 4
Table 2: Terms, abbreviations and definitions 5
Table 3: References to documents 5
Table 4: General packet structure: HIL_PACKET_T 7
Table 5: Brief description of the elements/variables of a packet 8
Table 6: System services (function overview) 12
Table 7: HIL_FIRMWARE_RESET_REQ_T – Firmware Reset request 13
Table 8: HIL_FIRMWARE_RESET_CNF_T – Firmware Reset confirmation 14
Table 9: HIL_HW_IDENTIFY_REQ_T – Hardware Identify request 16
Table 10: HIL_HW_IDENTIFY_CNF_T – Hardware Identify confirmation 17
Table 11: Boot Type 18
Table 12: Chip Type 18
Table 13: HIL_HW_HARDWARE_INFO_REQ_T – Hardware Info request 19
Table 14: HIL_HW_HARDWARE_INFO_CNF_T – Hardware Info confirmation 19
Table 15: HIL_FIRMWARE_IDENTIFY_REQ_T – Firmware Identify request 22
Table 16: HIL_FIRMWARE_IDENTIFY_CNF_T – Firmware Identify confirmation 22
Table 17: HIL_READ_SYS_INFO_BLOCK_REQ_T – System Information Block request 26
Table 18: HIL_READ_SYS_INFO_BLOCK_CNF_T – System Information Block confirmation26
Table 19: HIL_READ_CHNL_INFO_BLOCK_REQ_T – Channel Information Block request 27
Table 20: HIL_READ_CHNL_INFO_BLOCK_CNF_T – Channel Information Block confirmation

 28
Table 21: HIL_READ_SYS_CNTRL_BLOCK_REQ_T – System Control Block request 30
Table 22: HIL_READ_SYS_CNTRL_BLOCK_CNF_T – System Control Block confirmation 30
Table 23: HIL_READ_SYS_STATUS_BLOCK_REQ_T – System Status Block request 31
Table 24: HIL_READ_SYS_STATUS_BLOCK_CNF_T – System Status Block confirmation31
Table 25: HIL_DIR_LIST_REQ_T – Directory List request 33
Table 26: HIL_DIR_LIST_CBF_T – Directory List confirmation 34
Table 27: HIL_FILE_DOWNLOAD_REQ_T – File Download request 37
Table 28: HIL_FILE_DOWNLOAD_CNF_T – File Download confirmation 38
Table 29: HIL_FILE_DOWNLOAD_DATA_REQ_T – File Download Data request 39
Table 30: HIL_FILE_DOWNLOAD_DATA_CNF_T – File Download Data confirmation 40
Table 31: HIL_FILE_DOWNLOAD_ABORT_REQ_T – File Download Abort request 41
Table 32: HIL_FILE_DOWNLOAD_ABORT_CNF_T – File Download Abort confirmation 41
Table 33: HIL_FILE_UPLOAD_REQ_T – File Upload request 43
Table 34: HIL_FILE_UPLOAD_CNF_T – File Upload confirmation 44

Appendix 148/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Table 35: HIL_FILE_UPLOAD_DATA_REQ_T – File Upload Data request 45
Table 36: HIL_FILE_UPLOAD_DATA_CNF_T – File Upload Data confirmation 46
Table 37: HIL_FILE_UPLOAD_ABORT_REQ_T – File Upload Abort request 47
Table 38: HIL_FILE_UPLOAD_ABORT_CNF_T – File Upload Abort confirmation 47
Table 39: HIL_FILE_DELETE_REQ_T – File Delete request 48
Table 40: HIL_FILE_DELETE_CNF_T – File Delete confirmation 49
Table 41: HIL_FILE_RENAME_REQ_T – File Rename request 50
Table 42: HIL_FILE_RENAME_CNF_T – File Rename confirmation 51
Table 43: HIL_FILE_GET_MD5_REQ_T – File Get MD5 request 53
Table 44: HIL_FILE_GET_MD5_CNF_T – File Get MD5 confirmation 54
Table 45: HIL_FILE_GET_HEADER_MD5_REQ_T – File Get Header MD5 request 55
Table 46: HIL_FILE_GET_HEADER_MD5_CNF_T – File Get Header MD5 confirmation 55
Table 47: HIL_FORMAT_REQ_T – Format request 56
Table 48: HIL_FORMAT_CNF_T – Format confirmation 57
Table 49: HIL_DPM_GET_BLOCK_INFO_REQ_T – DPM Get Block Information request 58
Table 50: HIL_DPM_GET_BLOCK_INFO_CNF_T – DPM Get Block Information confirmation59
Table 51: Sub Block Type 60
Table 52: Transmission Flags 60
Table 53: Hand Shake Mode 61
Table 54: HIL_HW_LICENSE_INFO_REQ_T – HW Read License request 65
Table 55: HIL_HW_LICENSE_INFO_CNF_T – HW Read License confirmation 65
Table 56: HIL_SYSTEM_ERRORLOG_REQ_T – Format request 66
Table 57: HIL_SYSTEM_ERRORLOG_CNF_T – Format confirmation 67
Table 58: Packet fragmentation overview 68
Table 59: Packet Fragmentation: Extension and Identifier Field 69
Table 60: Packet Fragmentation: Example - Host to netX Firmware 70
Table 61: Packet Fragmentation: Example - netX Firmware to Host 70
Table 62: Packet Fragmentation: Abort Command 71
Table 63: Packet Fragmentation: Abort Confirmation 71
Table 64: Device data identification (Device Data Provider) 72
Table 65: HIL_DDP_SERVICE_GET_REQ_T – Device Data Provider Get request 75
Table 66: HIL_DDP_SERVICE_GET_CNF_T – Device Data Provider Get confirmation 76
Table 67: HIL_DDP_SERVICE_SET_REQ_T – Device Data Provider Set request 77
Table 68: HIL_DDP_SERVICE_SET_CNF_T – Device Data Provider Set confirmation 77
Table 69: HIL_EXCEPTION_INFO_REQ_T – Exception Information request 78
Table 70: HIL_EXCEPTION_INFO_CNF_T – Exception Information confirmation 79
Table 71: HIL_PHYSMEM_READ_REQ_T – Read Physical Memory request 81
Table 72: HIL_PHYSMEM_READ_CNF_T – Read Physical Memory confirmation 82
Table 73: Communication Channel services (function overview) 83
Table 74: HIL_READ_COMM_CNTRL_BLOCK_REQ_T – Read Common Control Block request

 84
Table 75: HIL_READ_COMM_CNTRL_BLOCK_CNF_T – Read Common Control Block

confirmation 85
Table 76: HIL_READ_COMMON_STS_BLOCK_REQ_T – Read Common Status Block request

 86
Table 77: HIL_READ_COMMON_STS_BLOCK_CNF_T – Read Common Status Block

confirmation 87
Table 78: HIL_DPM_GET_EXTENDED_STATE_REQ_T – Read Extended Status Block request

 88

Appendix 149/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Table 79: HIL_DPM_GET_EXTENDED_STATE_CNF_T – Read Extended Status Block
confirmation 89

Table 80: HIL_DPM_GET_COMFLAG_INFO_REQ_T – DPM Get ComFlag Info request 90
Table 81: Area Index 90
Table 82: HIL_DPM_GET_COMFLAG_INFO_CNF_T – DPM Get ComFlag Info confirmation91
Table 83: HIL_GET_DPM_IO_INFO_REQ_T – Get DPM I/O Information request 92
Table 84: HIL_GET_DPM_IO_INFO_CNF_T – Get DPM I/O Information confirmation 93
Table 85: Structure HIL_DPM_IO_BLOCK_INFO 94
Table 86: HIL_CHANNEL_INIT_REQ_T – Channel Initialization request 96
Table 87: HIL_CHANNEL_INIT_CNF_T – Channel Initialization confirmation 96
Table 88: Delete protocol stack configuration 97
Table 89: HIL_DELETE_CONFIG_REQ_T – Delete Configuration request 97
Table 90: HIL_DELETE_CONFIG_CNF_T – Delete Configuration confirmation 98
Table 91: HIL_LOCK_UNLOCK_CONFIG_REQ_T – Lock / Unlock Config request 99
Table 92: HIL_LOCK_UNLOCK_CONFIG_CNF_T – Lock / Unlock Config confirmation 99
Table 93: HIL_START_STOP_COMM_REQ_T – Start / Stop Communication request 100
Table 94: HIL_START_STOP_COMM_CNF_T – Start / Stop Communication confirmation100
Table 95: HIL_GET_WATCHDOG_TIME_REQ_T – Get Watchdog Time request 101
Table 96: HIL_GET_WATCHDOG_TIME_CNF_T – Get Watchdog Time confirmation 101
Table 97: HIL_SET_WATCHDOG_TIME_REQ_T – Set Watchdog Time request 102
Table 98: HIL_SET_WATCHDOG_TIME_CNF_T – Set Watchdog Time confirmation 102
Table 99: GENAP_GET_COMPONENT_IDS_REQ_T – Get Component IDs request 103
Table 100: GENAP_GET_COMPONENT_IDS_CNF_T – Get Component IDs confirmation104
Table 101: Packet header used for packet fragmentation 107
Table 102: Protocol stack services (function overview) 108
Table 103: HIL_SET_TRIGGER_TYPE_REQ_T – Set Trigger Type request 111
Table 104: HIL_SET_TRIGGER_TYPE_CNF_T – Set Trigger Type confirmation 112
Table 105: HIL_GET_TRIGGER_TYPE_REQ_T – Get Trigger Type request 112
Table 106: HIL_GET_TRIGGER_TYPE_CNF_T – Get Trigger Type confirmation 113
Table 107: HIL_SET_FW_PARAMETER_REQ_T – Set Parameter request 117
Table 108: Encoding Parameter Identifier 117
Table 109: Defined Parameter Identifier 118
Table 110: HIL_SET_FW_PARAMETER_CNF_T – Set Parameter confirmation 118
Table 111: HIL_PACKET_GET_SLAVE_HANDLE_REQ_T – Get Slave Handle request 121
Table 112: HIL_PACKET_GET_SLAVE_HANDLE_CNF_T – Get Slave Handle confirmation122
Table 113: HIL_PACKET_GET_SLAVE_CONN_INFO_REQ_T – Get Slave Connection

Information request 123
Table 114: HIL_PACKET_GET_SLAVE_CONN_INFO_CNF_T – Get Slave Connection

Information conformation 124
Table 115: HIL_REGISTER_APP_REQ_T – Register Application request 126
Table 116: HIL_REGISTER_APP_CNF_T – Register Application confirmation 126
Table 117: HIL_UNREGISTER_APP_REQ_T – Unregister Application request 127
Table 118: HIL_UNREGISTER_APP_CNF_T – Unregister Application confirmation 127
Table 119: HIL_LINK_STATUS_CHANGE_IND_T – Link Status Change indication 128
Table 120: HIL_LINK_STATUS_CHANGE_RES_T – Link Status Change response 129
Table 121: HIL_BUSSCAN_REQ_T – Bus Scan request 130
Table 122: HIL_BUSSCAN_CNF_T – Bus Scan confirmation 131
Table 123: HIL_GET_DEVICE_INFO_REQ_T – Get Device Info request 132
Table 124: HIL_GET_DEVICE_INFO_CNF_T – Get Device Info confirmation 133

Appendix 150/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Table 125: HIL_VERIFY_DATABASE_REQ_T – Verify Database request 134
Table 126: HIL_VERIFY_DATABASE_CNF_T – Verify Database confirmation 135
Table 127: HIL_ACTIVATE_DATABASE_REQ_T – Activate Database request 136
Table 128: HIL_ACTIVATE_DATABASE_CNF_T – Activate Database confirmation 136
Table 129: HIL_SET_REMANENT_DATA_REQ_T – Set Remanent Data request 139
Table 130: HIL_SET_REMANENT_DATA_CNF_T – Set Remanent Data configuration 140
Table 131: HIL_STORE_REMANENT_DATA_IND_T – Store Remanent Data indication 141
Table 132: HIL_STORE_REMANENT_DATA_RES_T – Store Remanent Data response 142
Table 133: Status and error codes 146

Appendix 151/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

7.3 Legal notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
Illustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert

Appendix 152/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

 Flight control systems in aviation and aerospace;

 Nuclear fission processes in nuclear power plants;

 Medical devices used for life support and

 Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

 For military purposes or in weaponry;

 For designing, engineering, maintaining or operating nuclear systems;

 In flight safety systems, aviation and flight telecommunications systems;

 In life-support systems;

 In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Appendix 153/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft für Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft für Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft für
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

Appendix 154/154

netX Dual-Port Memory | Packet-based services (netX 90/4000/4100)
DOC190301API03EN | Revision 3 | English | 2019-08 | released | Public © Hilscher, 2019

7.4 Contacts

Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Terms, abbreviations and definitions
	1.4 References to documents
	1.5 Information and data security

	2 Packet-based services
	2.1 General packet structure
	2.2 Recommended packet handling
	2.3 Additional Packet Data Information

	3 System services
	3.1 Function overview
	3.2 Firmware / System Reset
	3.3 Identifying netX Hardware
	3.3.1 Read Hardware Identification Data

	3.4 Read Hardware Information
	3.5 Identifying Channel Firmware
	3.6 System Channel Information Blocks
	3.6.1 Read System Information Block
	3.6.2 Read Channel Information Block
	3.6.3 Read System Control Block
	3.6.4 Read System Status Block

	3.7 Files and folders
	3.7.1 List Directories and Files from File System
	3.7.2 Downloading / Uploading Files
	3.7.2.1 File Download
	3.7.2.2 File Download Data
	3.7.2.3 File Download Abort

	3.7.3 Uploading Files from netX
	3.7.3.1 File Upload
	3.7.3.2 File Upload Data
	3.7.3.3 File Upload Abort

	3.7.4 Delete a File
	3.7.5 Rename a File
	3.7.6 Creating a CRC32 Checksum
	3.7.7 Read MD5 File Checksum
	3.7.8 Read MD5 File Checksum from File Header

	3.8 Format the Default Partition
	3.9 Determining the DPM Layout
	3.10 Flash Device Label
	3.11 License Information
	3.12 Error Log information
	3.13 General packet fragmentation
	3.14 Device Data Provider
	3.14.1 Device Data Provider Get service
	3.14.2 Device Data Provider Set service

	3.15 Exception handler
	3.15.1 Exception Information service
	3.15.2 Read Physical Memory service

	4 Communication Channel services
	4.1 Function overview
	4.2 Communication Channel Information Blocks
	4.2.1 Read Common Control Block
	4.2.2 Read Common Status Block
	4.2.3 Read Extended Status Block

	4.3 Read the Communication Flag States
	4.4 Read I/O Process Data Image Size
	4.5 Channel Initialization
	4.6 Delete Protocol Stack Configuration
	4.7 Lock / Unlock Configuration
	4.8 Start / Stop Communication
	4.9 Channel Watchdog Time
	4.9.1 Get Channel Watchdog Time
	4.9.2 Set Watchdog Time

	4.10 Channel Component Information
	4.11 Communication channel packet fragmentation

	5 Protocol Stack services
	5.1 Function overview
	5.2 DPM Handshake Configuration
	5.2.1 Set Trigger Type
	5.2.2 Get Trigger Type

	5.3 Modify Configuration Settings
	5.3.1 Set Parameter Data

	5.4 Network Connection State
	5.4.1 Mechanism
	5.4.2 Obtain List of Slave Handles
	5.4.3 Obtain Slave Connection Information

	5.5 Protocol Stack Notifications / Indications
	5.5.1 Register Application
	5.5.2 Unregister Application

	5.6 Link Status Changed Service
	5.7 Perform a Bus Scan
	5.8 Get Information about a Fieldbus Device
	5.9 Configuration in Run
	5.9.1 Verify Configuration Database
	5.9.2 Activate Configuration Database

	5.10 Remanent Data
	5.10.1 Set Remanent Data
	5.10.2 Store Remanent Data

	6 Status and error codes
	6.1 Packet error codes

	7 Appendix
	7.1 List of figures
	7.2 List of tables
	7.3 Legal notes
	7.4 Contacts

