>
hilscher

COMPETENCE IN
COMMUNICATION

Driver Manual
cifX Device Driver

Linux
Vv2.0.0.0

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

Introduction 2/71

Table of contents

1 Ta) oo 1V [ox 410 o I PP 4
R 1Y o o T 01 B 1 T30 (o T W] 0 0= o | SR 4
O I8 1 o) =1 13 o] g S 4
R T @ = V1= RS 5
R L= o 111 (= 3 0= g1 £ SRS 6
T e C T 10 | O PPPRTR 6
G T BT V1 7= 110 PP 7
A O B I o0] 1 (=] o £ 7SR 8
1.8 Terms, abbreviations and defiNitiONSuuiiiiiiiiiiiiiiiiieeeeeeee e e e e e e e e re e e e erereeerereeeeeees 8
S B = (=T (=T o [od=T3h (ol e (o Tod U1 =T o) T 9

2 ot =T LY T Lo =1 o 0 =PRSS 10
INSTAIALION ..ccciiieeceeee e 11
0 A = = =T (U £ = PR 11
G = =T o - L o] o PR 12
3.3 Installation of the driver in ONE SEEPccii i e e e 13
3.4 Single step iNStallation PrOCESS.....uuuiiiii et ee e e e e s s s e e e e e e s s e e e e e e s snnraaereeeesaennnnrens 13

3.4.1 Compiling the netX UIO Kernel MOAUIEooiiiiiiiiiiiiiie et e e 14
3.4.2 Compiling the CifX USErspace lIDrarycuvuiiiiiiiiie e e e 18
3.5 Compiling the eXample PrOgramScciiiiuiiiiee e e e e e e s s s e e e e e s s st r e e e e e e s snnrareeeeeessennnneens 23
3.5.1 Compiling the cifX example program via CONSOIE...........cceiiiiiiiiiiiiiee et 23
3.5.2 Compiling the cifX example program Via IDEccuuiiiiiiiiiiiiiicee et 24
3.6 Loading netX UIO driver MOAUIE............cocueiiiieie et e e e e e e e e e e e nnnneees 25
3.7 Firmware and configuration file StOrage.........uuuieiiiiiiiiiiiiie e 26
3.7.1 Configuration file storage MethodS OVEIVIEW...........cc.uuiiiiiie et e e 26
3.7.2 Device identification via slotnumber (Slotnumber SWItCh).............oeeiiiiiiiiiiieie e 28
3.7.3 Device identification via device and Serial NUMDETcvviiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeereeeeeeererereraee. 29
3.7.4 Device identification Via dEVICE NAME..........cuuiiiiiiiiieiieeiieeeeeeeeereeereessrereeeseerererererererr—r——————————. 30
3.7.5 Device identification via SiNgle dIr€CLOMYoiii i e 31
3.7.6 Creating the directory tree of the configuration file storageccccoiiiiiiiiniii e 32
4 Linux driver-specCific iNfOrMatioNcoiiiiiiiiiiiie e e e e e rerr e e e e e s e e nnnneees 33
4.1 AddItioNal SLIUCKUMESo, 34
4.1.1 SrUCtUre CIFX _LINUX INIT Loiieitiiititututteuentueueueseuesesssesesasssssesssesssssssesssesssssssssssesesesesssesssesesssnssnnsnnnn 34
4.1.2 SHUCIUIE CIFX _DEVICE T .oiiiiitiiiiiututuuueututttutuesauesaseuesessnesssesssesssssssssssssssssesssssssssssssssessssssssssssnnssnnns 35
2 Yo [0 11 To T g = I 00T 1o o 1SS 37
o o1 9 1 1)Y= 4 [o1 { (OSSP 38
A o1 7 {1 1)Y= 14 D =T o1 (OSSP 39
4.2.3 XDriVErRESIAMDEVICE() ..eiiiieiiieiie e i e ettt e e ettt e e e e e st e e e e e s et e e e e e e e saab b e e e eaeeeasatb e et eeeeeensnraaees 39
4.2.4 CitXGEIDIIVEIVEISION()...ciiiitiiiiiee e e eee ettt e et e e e e e et e e e e e e sttt e e e e e s sasabtbeeeaeesaasstbaaeeeesaannstaeees 40
R o1 9 (€T 1 B =YY ot T @ o 1H o] { (USSP 40
A R o1 9 10 To | LoV o=) IR ERPT S 41
N o1 9 (B 1= [(T B LoV o] =T) USRI 41
4.3 SUPPOIt fOr NON-PCI HBVICESccoieiieeieie ettt ettt e e et e e e e e e s aeb e eeaaaeeaaaas 42
4.3.1 ISA or other memory-mapped deViCeS (DPM)cou it a e 43
4.3.2 Custom-specific hardware INTEIfACEoooi i 44
4.3.3 The plugin interface Of the ArIVETuiiiii e e a e e e raaee s 48
4.4 Startup procedure Of driVEI/IDIArY..........cccciiiiiiiiiee e e e rre e e e e e 50
4.4.1 Startup via AUTOSCAN 0r CARD NUMDETuiiiiiiiiii ittt 50
4.4.2 Startup via CIFX_DRIVER _INIT_NOSCANottt ettt e e e e e et n e e e e e e e snsaaees 51
4.5 Device configuration (deVICE.CONT)uiiiiiiiiiiiii e e e e re e e e e e 52
4.6 netX-based virtual Ethernet INtErfaCe..........cocuviiiiii e e e 54
T R =T (=P PP PPPPPPRPPPRS 54
B = L= To (81T =1 1 0 T=T o €O PRPRTO 54
R B 11411 7= L1 [[OO PRPRRR O 54
R @ 1YY V1 OSSP 55
4.6.5 Virtual cifX Ethernet iNterface SETUPooii it e et e e e e e e aeeeas 56

5 Using SYCON.net to configure the fieldbus SYStemM.........cevvviiiiiiiiiiii e 57
5.1 RemoOte aCCESS VIA TCP/IP-SEIVEN ... aaaaaaaessaasnsnanssnnnnnnnnnnnns 57

6 Programming With the CifX LINUX DIIVE ...t 58
6.1 Example: Generic driver iNtialiZationueerieeiiiiiiiece e 58

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Introduction 3/71
6.2 Example: Driver initialization for ISA deVICEooiuiiiiiiiiiee e 59

6.2.1 NOt USING UIO AFIVETttt e e e e e ettt e e e e e e e ntbe e e e e e e e e annbeeeeaaeeeaannnnneeaaaean 59

(32 U 1 [(o T 1 (@ 2o |41/ PSP PPRPP 60

6.2.3 USING the DEVICE TrEE . .uutiiiiiiee i ittt ettt ettt e e e e e st e e e e e s st a e e e e e e e s sastbereeeaeessassaraaeeaeesan 61

6.3 Example: Driver initialization for custom hardware interfaceccccccovvveiviieeiee i 62

6.3.1 Using the hardware read/write abSIraCtioNcocuuiiiieeiiiiiiii e 62

6.3.2 Using the SPI plugin (Linux spideVv framework)uuiiiiiiiiiiiiiece e 63

7 L@ TUT=TSy (0T g I= [0 = U oYY 64
7.1 CITX DBVICE DIFIVET ... b e s e e e aas s baa s s aaaasssaaassesssbsssssssasssssssssssbssssnsnssnnnnnes 64

7.1.1 Failed to install driver via BUild SCIIPL........cccuiiiiiee e 64

7.1.2 ltis not possible to run any script located 0N the CD...........coociiiiiiii e 64

7.1.3 Failed to load the uio_netx Kernel MOdUIEcoouiiiiiiii e 64

7.1.4 Unable to access OF fiNA @ TEVICE........oooi ittt e et e e e e e e eeaeaeeaaa e an 64

7.1.5 Failed to map the DPM Of @ GEVICE.......coi i e e e e e e e 65

7.1.6 cifX device is not correctly CONfIQUIEMeiiiiiii e e 65

7.1.7 No log file of the user space driVer iS Created.............uuiiiiii it e e 65

7.1.8 Failed request DMA state or to exchange [O-data Via DMAccoooiiiiiiiiieie e 65

7.2 netX-based virtual Ethernet iNterface. ... 66

7.2.1 Failed to create a virtual Ethernet iNterfaCeocuiiiiiiiii e 66

7.2.2 NO CifX Ethernet deVICE @PPEAISvuiiie ettt e e e et e e e e e s et e e e e e s sstbraaeeaeeean 66

7.2.3 No network access although device successfully created..........ccccceeeiiiiiiiieiieeiiiiiieec e 66

7.2.4 Network adapter disappears during deVICE FESELueiiiiiiiiiiiiiiiee e e e eaeee e e 66

8 Y o 0 1= g o 1 G SO 67
8.1 LISE Of tADIES ..eeeieiieie et e e e e et e e e e e nareeeaaa 67

S N 11 Ao) T [=P EER 67

SR T I =T - | AL (PR 68

S J R @] o] - Yo £ T 71

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Introduction

4/71

1 Introduction
1.1 About this document

This manual describes the Hilscher cifX driver for Linux and its architecture.

The driver offers access to the Hilscher netX-based hardware (e.g. CIFX50) with the same
functional API as the cifX Device Driver for Windows®.

1.2 List of revisions
Rev | Date Name Chapter Revision
9 2017-09-17 |SD,HH |2 Section Licensing terms expanded.
41.1 Description of ‘fEnableCardLocking’ reworked.
3.4.xx Added separate note for severity of ‘Preparation’ section.
10 2019-02-13 |SD - cifX Device Driver V1.2.0.0.
14,15,1.7, Description updated according to V1.2.0.0 (build tool CMake).
3.4.2,3.7
4.3.3 Section The plugin interface of the driver added.
6.2.3 Section Using the Device Tree added.
6.3.2 Section Using the SPI plugin (Linux spidev framework) added.
11 2019-09-11 |sSD 3.4.2.2 Added missing header files according to V2.0.0.0
3.7 Section Firmware and configuration file storage updated;
Section Device identification via device name: device name method
added.
Subsection reordered.

Table 1: List of revisions

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Introduction 5/71

1.3 Overview

The cifX Linux driver runs as a library in userspace and accesses the card via a UIO kernel module
(Userspace 1/0O).

Application

/

libcifx.so

T

User space ppy, DMA / IRQ Mapping

uio_netx.ko

(maps memory and handles

IRQ’s)

BoardO..n

External CHO ‘ CH1 ‘
hardware

Figure 1: Linux cifX driver architecture

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Introduction 6/71

1.4

Requirements

Mandatory

Linux Kernel Source (for PCI cards or other devices which rely on uio_netx)
libpthread, librt
CMake (min 2.8.9)

Optional

Linux standard libraries libpciaccess (tested with V0.10.2 / V0.13.1-2)
- always needed for cifX PCI cards, support can be disabled by defining
CIFX_TOOLKIT_DISABLEPCI)

Optional: pkg-config utility for automatic finding/configuring needed libraries

Note: The support of autotools build method is discontinued.
Starting with release V2.0.0.0 of the cifX Device Driver for Linux, CMake is supported
only.

1.5 Features

Unlimited number of cifX boards supported

Support for NXSB-PCA or NX-PCA-PCI, netPLC, netJACK boards included

Interrupt notification for applications

Support of second Memory Window for PCI-based device (e.g. MRAM)

Setting the device time during start-up if time handling is supported by the device
DMA Support

Support of a Virtual cifX Ethernet Interface (see section netX-based virtual Ethernet interface
on page 54)

uio_netx driver supports custom memory mapped devices

(e.g. DPM, ISA, or other non PCI devices)

Interrupt support for ISA devices (when using uio_netx with custom device)

Simple integration of custom hardware interface

Simple access of devices via SPI plugin (support for Linux spidev framework devices)
uio-netX kernel module provides support for device tree initialization

Building with Eclipse

Example recipes for Yocto buildenvironment

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Introduction 7/71

1.6 Limitations

No Interrupt support for NXSB-PCA and NX-PCA-PCI boards

On big-endian machines the user is responsible for converting send/receive packets from/to
little endian. This is NOT automatically done inside the driver / toolkit.

One application can access a card simultaneously only. For multi-application access to a
single card, a special application needs to be implemented by user

Online diagnostics access via SYCON.net needs a TCP/IP Server functionality integrated
into the user application. An example stand alone server is offered with the Linux driver.

libcifx (Toolkit) needs to run as 'root' or with a user that has the following rights:

read/write access to the PCI configuration registers
(i.e. '/sys/class/uio/uio<n>/device/config')

Mapping of DPM to user space (see 'mmap' and 'ulimit -1')
read/write access to devices '/dev/uio<n>'
read/write access to /dev/imem (for user added devices)

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Introduction 8/71
1.7 CD contents
Folder Content
Documentation Driver documentation
driver
libcifx cifX Linux driver source
(CMake project / Eclipse project)
plugins plugin source (for hw-read/write plugins & plugin for netX SPI access)
(CMake project / Eclipse project)
uio_netx netx uio driver sources
BSL boot loader files
scripts installation scripts for the uio_netx kernel module
templates templates for several device configurations including device tree
examples cifX example application
cifxsample Small example application, demonstrating driver initialization and toolkit usage
(autoconf project / Eclipse project)
cifXTCPServer Example stand alone TCP server for SYCON.net diagnostic access
(autoconf project / Eclipse project)
cifXTestConsole Demo application for testing toolkit functions
(autoconf project / Eclipse project)
LoadModules Example application, demonstrating firmware module loading.
(Eclipse project / Makefile)
ISASample Small application, demonstrating the initialization of an ISA device via User Space
library libcifx
SPISample Small application, demonstrating the initialization of an SPI device via User Space
library libcifx
Diagnostic and remote Documentation, example and sources for the netX diagnostic and remote access
Access

Table 2: CD contents

1.8 Terms, abbreviations and definitions

Term Description
cifxX Communication Interface based on netX
comX Communication Module based on netX
PCI Peripheral Component Interconnect
ulo Userspace 1/0
API Application Programming Interface
DPM Dual-Port Memory
Physical interface to all communication board
Note: DPM is also sometimes used for PROFIBUS-DP Master

Table 3: Terms, abbreviations and definitions

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Introduction 9/71

1.9

References to documents

This document refers to the following documents:

[1]
[2]
[3]
[4]

[5]

(6]

Hilscher Gesellschaft fir Systemautomation mbH: Programming reference guide, CIFX API,
DOC121201PRO7EN, Revision 7, English, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Driver Manual, cifX Device Driver,
Windows 2000/XP/Vista/7/8/10, V2.2, DOC060701DRV27EN, Revision 27, English, 2019.

Hilscher Gesellschaft fur Systemautomation mbH: Protocol API, Ethernet, Packet interface,
V4.4.0, DOC0O60901APIO9EN, Revision 9, English, 2017.

Hilscher Gesellschaft fir Systemautomation mbH: Toolkit Manual, cifX/netX Toolkit, DPM,
V2.1, DOC090203TK11EN, Revision 11, English, 2019.

Hilscher Gesellschaft fir Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services (netX 10/50/51/52/100/500), DOC161001APIO3EN, Revision 3,
English, 2019.

Hilscher Gesellschaft flr Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services (netX 90/4000/4100), DOC190301APIO3EN, Revision 3, English,
2019.

Table 4: References to documents

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Licensing terms 10/71

2 Licensing terms

The Hilscher cifX Linux driver consists of several modules.
uio_netx Offered by Hilscher Gesellschaft fir Systemautomation mbH
The latest version of the uio_netx kernel module is located on the CD.
This module is licensed under GPL V2 and can be used under these terms.
libcifx Offered by Hilscher Gesellschatft fir Systemautomation mbH
This library is a userspace library and an intellectual property of the
Hilscher Gesellschaft fur Systemautomation mbH.

The source code and library can be used for internal development, modification and
debugging purpose.

Distribution of the original libcifx source code, parts of the libcifx source code or
modifications based on it is prohibited.

Binary distribution for use in products is allowed.

This software program is protected under German and international copyright law as well as under
international laws and regulations governing commerce and the protection of intellectual property.

Licensee is not permitted to convert the Software, and particularly the program code, back into
another code form (decompilation / disassembly) or otherwise trace the various stages the
Software has undergone during production thereof (reverse engineering), or to make any changes,
additions, or modifications to the program except

as permitted within the scope absolutely granted under copyright law (Sections 69 d and 69 e
of the Copyright Act of the Federal Republic of Germany). Licensee is permitted to remedy
errors or to change the program in order to adapt it to new provisions of applicable law or
regulations or to adjust it for different hardware.

as this is necessary for the exercise of rights resulting from the licenses of possibly used
open source components. Modification of the Software and reverse engineering for
debugging such maodifications are permitted, insofar required for dynamically linking with
LGPL licensed glibc.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 11/71

3 Installation

This chapter describes the installation procedure consisting of the compile and installation process
of the user space library libcifx and the kernel module uio_netx including the cifX example
programs.

The cifX driver can be installed in two ways

Using the installation script located on the CD, building automatically all required
components and installing all required files

Building and installing all components separately

For the standard use case the automatic installation should be sufficient (see section Installation of
the driver in one step on page 13). In case of custom needs (e.g. update of only a single
component, building the driver for another target system or any installation trouble) the single step
installation is the preferred way (see section Single step installation process on page 13).

The following steps are required to run a demo application

Plug in the cifX hardware and start the system
Extract the driver sources (see section Preparation on page 12)

Install all required driver components (see sections Installation of the driver in one step /
Single step installation process on page 13)

Load the kernel driver (optional - depends on the chosen installation method, see section
Loading netX UIO driver module on page 25)

Build the demo application (see section Compiling the example programs on page 23)

In case of any installation trouble please first refer to the chapter Question and answers on page
64.

3.1 Prerequisites

In case building the libcifX library including PCI support (default!) the kernel headers are
required to build the kernel module

Kernel headers (version of the kernel, the modules should be build for)
GCC

For PCI card support
Library and development package of libpciaccess (tested with V0.10.3 /V0.13.1-2)

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 12/71

3.2 Preparation

The following steps explain how to copy the driver source from the CD and extract them in a
working directory.

Note: Some files of the driver package provide special functions, e.g. scripts are marked as
executable. Not to lose such attributes and permissions, it is required to unpack the
driver archive under Linux operating systems. Unpacking the archive under another
operating systems (e.g. Microsoft Windows) may clear all attributes. In this case it is
not possible to run the scripts without manually restoring of all attributes and
permissions.

Change to your working directory (e.g. /nome/project/)
cd /home/project/

Note: Do not use any whitespaces within your project path since the provided scripts do not
handle these.

Extract/copy the sources from the CD (choose the archive because of the file attributes, see
note above)

tar xf /mnt/cdrom/driver.tar.bz
Change into the extracted folder
cd ./driver

Most of the work, explained in this document will start from this point. If not especially noted,
‘project folder' refers to this folder.

Note: Since several installation instructions rely on the ‘project folder’, in the following the
document estimates the folder as extracted.

If not especially noted, 'project folder' refers to the folder of the extracted driver
source.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 13/71

3.3 Installation of the driver in one step
Build process
Note: The next steps require the accomplishment of the preparation noted under section

Preparation on page 12.

Change to the driver directory
cd driver/

Run the installation script (root rights requested during installation). Optionally a build folder
can be passed, otherwise the built binaries reside in ./tmp_build/

optional step: mkdir my_build_folder
Jbuild_install_driver [optional pass the build folder]
Follow the installation instructions

In case of successful installation the driver is ready to use. For any restrictions see the
following note.

Note:

In case of a successful installation, note the following restrictions

Running an example program, every accessible device will appear with only the boot
loader being flashed. For device specific configuration (e.g. download of device specific
firmware) see section Firmware and configuration file storage on page 26.

In case of a system reboot the kernel driver needs to be reloaded (for an automated
load see section Loading netX UIO driver module on page 25).

3.4

Single step installation process

The single step installation process comprises the installation of the following components

Boot loader and Firmware (mandatory: required for firmware and configuration)

Install the firmware and the boot loader (see section Firmware and configuration file storage
on page 26 and Creating the directory tree of the configuration file storage on page 32).

Kernel Module (optional: required for PCI devices)

Build the kernel module netanalyzer.ko and install it (see section Compiling the netX UIO
kernel module on page 14).

User Space library (mandatory: user space driver)

Build the libcifx user space library and install it (see section Compiling the cifX userspace
library on page 18).

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 14/71

3.4.1 Compiling the netX UIO kernel module

Building the uio_netx kernel module can be done in two ways
Building the uio_netx kernel module during the kernel build procedure
Building the uio_netx kernel module only
The way, which should be chosen, depends on, if the kernel of the target system is already built.

In case, the kernel is already built, there is no need to rebuild the whole kernel. It is possible to
build the uio_netx module as an external module and install it afterwards.

3411 Compiling the UIO kernel module during kernel build process

The following steps describe how to build the whole kernel including the uio_netx module. This
generic kernel build procedure may differ from your kernel build mechanism.

Note: If the kernel is already built, it is not necessary to recompile the whole kernel. In this
case, skip this step and continue with section Compiling the UIO kernel module on
page 16.

Change to your working directory (e.g. /usr/src)

cd /usr/src

Extract the kernel sources

tar xjf linux-source-x.x.x.tar.bz2

Change into the uio driver folder within the extracted kernel source
cd linux-source-x.x.x/drivers/uio

If necessary, make a copy of the original uio netX source code and then update the uio netx
kernel source

Cp uio_netx.c uio_netx.c.[linux-version]

cp [path to project folder]/driver/uio/uio_netx.c .

Load your old kernel configuration via command line or inside 'make menuconfig'
make oldconfig

Configure your kernel to include UIO (‘Userpace /O drivers) and uio_netx (‘Hilscher NetX
Card driver’)

make menuconfig
Enable 'Device Drivers / Userspace 1/O Drivers / Hilscher netX Card Driver'
On demand enable DMA support

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 15/71

fle Edie View

Bockmarks Sattings Help

“ Optional: Rebuild the kernel (necessary only if Hilscher netX Card driver should be a built-in
driver, not a module)

make all install
" Build and install the modules
make modules modules_install

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 16/71

3.41.2 Compiling the UIO kernel module only

To build the kernel module out of tree for a kernel that is already built, the build and installation
process can be done manually or by script. If the target machine is the same machine as the build
machine and the module should be built for the current running kernel the automatic installation
process is the preferable way because of its easy usage. In contrast, the manual way is more
flexible. In case of building the modules for another system choose the manual method.

Any further step depends on the preferred installation method, script-based or manually.

Automatic Installation Process using the Script

Note: The next steps require the accomplishment of the preparation noted under section
Preparation on page 12.

Change into the project driver folder (see section Preparation on page 12)
(e.g.) cd /homel/projects/driver

Change into 'scripts’

cd ./scripts

Build the kernel module (during the build process it is possible to enable or disable DMA
support)

Jinstall_uio_netx build

Install the module to the current kernel installation path (see /lib/modules/$(uname -r)/)
Jinstall_uio_netx install

Update the kernel's module dependencies

Jinstall_uio_netx update

At this point the module is installed only. Module loading is described in chapter Loading netX UIO
driver module on page 25.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 17/71

Manual installation process

Note: The next steps require the accomplishment of the preparation noted under section
Preparation on page 12.

Change to your project driver folder (see section Preparation on page 12)
(e.g.) cd /home/project/driver

Change into 'uio_netx’

cd uio_netx

Run the makefile

Note: By default the makefile will generate a module for the active kernel (-> see
uname -r) and DMA support enabled.

To generate a module for a specific kernel set the argument 'KDIR' to the kernel header
directory the module should be build for. To disable DMA set the argument 'DMA_DISABLE'
to'1".

Example: Disabled DMA support and kernel header files located under
/home/project/my_kernel/:

make DMA_DISABLE=1 KDIR=/home/project/my_kernel/

Copy the uio_netx module in the target directory of the system the module is built for

cp uio_netx.ko /lib/modules/[kernel-version]/kernel/drivers/uio/

(Example: cp uio_netx.ko /lib/modules/$(uname -r)/kernel/drivers/uio/)

Update the list of the module dependencies

depmod

At this point the module is installed only. Module loading is described in chapter Loading netX UIO
driver module on page 25.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 18/71

3.4.2 Compiling the cifX userspace library

The userspace library contains the cifX Toolkit with all necessary Linux adaptations. This library
needs to be build for the system the library should run on. The library can be built via the console
or the Eclipse IDE.

3.4.2.1 Using the console (CMake)

Installation procedure

Note: The next steps require the accomplishment of the preparation noted under section
Preparation on page 12.

Change to your project driver folder (see section Preparation on page 12)
(e.g.) cd /home/project/driver

Create and change into the libcifx build directory

mkdir libcifxbuild

cd libcifxbuild

Configure CMake environment

cmake [project driver folder] [options]

e.g.: cmake /home/project/driver/libcitx -DDMA=0ON -DTIME=0OFF

Option Parameter Description
CMAKE_INSTALL_ | Installation path Sets the path where the library (subdirectory lib) and include
PREFIX files (subdirectory include/cifx) will be installed.

Default: /usr/local
DEBUG On/off Enables debug symbols for the generated library
DISABLE_PCI On/off Disable PCI support. This will remove all links to libpciaccess.

Note: When compiling without PCI support, the driver cannot
handle cifX PCI cards any more

DMA On/off Enables DMA support

HWIF Onl/off Enables support for custom hardware interface (for more
information see section Support for non-PClI device on page
42). For SPI see also SPM_PLUGIN

NO_MINSLEEP On/off Disables minimum sleep time. If “on” the driver may “wait
active” (no call to pthread_yield())

SPM_PLUGIN On/off Enables support for SPI devices under Linux/spidev framework,
see section Using the SPI plugin (Linux spidev framework) on
page 63)

TIME On/off Enables toolkit function, setting the device time during device
start-up.

VIRTETH On/off Enables support for the netX based virtual Ethernet interface

Note: This feature requires dedicated hardware and firmware
(for more information see section netX-based virtual Ethernet
interface on page 54).

CFLAGS Compiler flags Custom compiler flags (e.g. 32-bit on 64-bit platform
CFLAGS=-m32)

Table 5: Additional libcifx configuration options

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 19/71

Build all source modules

make all

Install the library and include files (root required)
make install

Note: For more comfortable configuration see ccmake. It's a “console based graphical
version* of CMake.

Page 1 of 1
CMAKE_BUIL
CMAKE_INST, fusr/local
] G
DISABLE_PCI
DMA
HHWIF
MINSLEEP
PLUGIN
SPM_PLUGIN
TIME
VIRTETH

CMAKE_BUILD_TYPE: Choose the type of build, options are: None(CMAKE_CXX_FLAGS or CMAKE_C_FLAGS used) Debug Release RelWithDebInfo MinSizeRel.
t option to delete an entry CMake Version 3.18.2

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 20/71

3.4.2.2 Using the Eclipse IDE

Get the Eclipse C/C++ environment from https://www.eclipse.org/downloads/. Depending on the
download, you will need additionally the CDT-plugins (https://www.eclipse.org/cdt/downloads.php).
They may be required to build and debug C/C++ projects. For more information see

https://www.eclipse.org/cdt/. There is also information about how to start and develop under the
Eclipse environment.

When Eclipse is installed and the workspace path is set, you can load the predefined cifX library
project as follows:

Start Eclipse.

Select File > Import and choose in the folder General, Existing Projects into Workspace.

Select the path to the extracted sources (['project folder'/libcifx, see section Preparation on
page 12) and load the shown pre-selected project.

() Import ——— ®®)
Import Projects r
Select a directory to search for existing Eclipse projects. L ;’4
® Select root directory: ‘fhomeisdoeHNl-O‘O-OIdr\verfthIf‘x Browse...
O select archive file: ‘
Projects:
ST S @ libcifx (fhomefsdoellpvl.0.0 0/driver/libeifx) Select All
Select \ Deselect All
Y|
ji fi hive fil di 2
Create new projects from an archive file or directory. H Rgfresh
Select an import source:
|
~ (& General
G Archive File
(), File System [Copy projects into workspace
EL preferences Working sets
= &+
[E] C/C++ Executable [Add project to working sets
(£ cfc++ Project Settings
b =cvs
b @ Plug-in Development B
@ [s | | canca @ < Back [mnsh] cancel
Figure 2: Eclipse IDE — Import project
Note: Figure 2 shows a project import of the cifX library V1.0.0.0. The project name depends

on the cifX library version.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

https://www.eclipse.org/downloads/
https://www.eclipse.org/cdt/downloads.php
https://www.eclipse.org/cdt/

Installation

21/71

After importing the project, right click on libcifx, which is shown in the project explorer, to open the

extended settings.

Right click on the project libcifx.

Select Properties > C/C++ Build > Settings.
Under the tab Tool Settings > Symbols you can define or undefine special compiler flags.
The default setting is a debug version (g3) without any optimization. The following compiler flags

can be set additionally.

Option Parameter Description
DEBUG compiler Enables debug symbols for the generated library
parameters
CIFX_TOOLKIT_ compiler Disable PCI support. This will remove all links to libpciaccess.
DISABLEPCI parameters Note: When compiling without PCI support, the driver cannot handle
cifX PCI cards any more
VERBOSE compiler Enable verbose outputs to console
parameters
CIFX_TOOLKIT_TIME compiler Enables toolkit function, setting the device time during device start-
parameters up.
CIFX_TOOLKIT_DMA compiler Enables DMA support
parameters
NO_MIN_SLEEP compiler Disables minimum sleep time. If “on” the driver may “wait active” (no
parameters callto pthread_yield())
CIFXETHERNET compiler Enables support for the netX based virtual Ethernet interface
parameters Note: This feature requires dedicated hardware and firmware (for
more information see section netX-based virtual Ethernet interface on
page 54).
CIFX_DRV_HWIF compiler Enables support for custom hardware interface (e.g. SPI)
parameters (for more information see section Support for non-PCI device on page
42)
CIFX_PLUGIN_SUPPORT | compiler Enables support for plugins (see The plugin interface of the driver on
parameters page 48)

Table 6: Additional libcifx configuration options

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 22/71

Build the project

Use either the menu entry Project->Build All or right click the libcifx project entry in the 'Project
Explorer' view and chose Build Configurations->Build->All.

Install the library

Now the library (located under '~/libcifx/Release/' or '~/libcifx/Debug/") needs to be copied to the
installation path (/ust/local/llib/). ~ The correct library file is in the format
libcifx.so.[Major].[Minor].[Release].

Note: The name of the library depends on the version (e.g. library libcifx.s0.1.0.4)

Finally run the next three steps:
Change into the installation directory (cd /usr/local/lib/).
Run Idconfig to register library and create a link
Idconfig
Create a symbolic link ‘libcifx.so’ to the cifx library libcifx.so.[Maj].[Min].[Rel]
Example for libcifx library V1.0.4
In —s libcifx.s0.1.0.4 libcifx.so

Note: The required include files (see following list) must also be copied to the installation path
(/usr/local/include/cifx/).

cifXEndianess.h Hil_Logbook.h
CifXErrors.h Hil_ModuleLoader.h
cifx_io_server.h Hil_Packet.h
cifxlinux.h Hil_Results.h
cifx_plc_server.h Hil_SharedDefines.h
cifXUser.h Hil_SystemCmd.h
Hil_ApplicationCmd.h Hil_Taglist.h
Hil_BootParameter.h Hil_Types.h

Hil_ CommandRange.h io_client.h
Hil_Compiler.h netXAPI.h
Hil_ComponentID.h netx_tap.h
Hil_DeviceProductionData.h rcX_Public.h
Hil_DualPortMemory.h rcX_User.h
Hil_FileHeaderV3.h TLR_Types.h
Hil_Firmwareldent.h User_Compiler.h

Hil_GenericCommunicationinterface.h

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 23/71

3.5 Compiling the example programs
All example applications listed in section CD contents on page 8, rely on the same two ways to be
build.
Via Console (CMake / Makefile)
Via IDE (Eclispe)
The following chapter explains how to build an application using the cifxsample test program.

Note: Before using the test applications make sure you have compiled and installed the cifX
library which is described in section Compiling the cifX userspace library on page 18.

3.5.1 Compiling the cifX example program via console

Installation procedure

Note: The next steps require the accomplishment of the preparation noted under section
Preparation on page 12.

Change into the project examples folder (see section Preparation on page 12)
(e.g.) cd /home/projects/examples

Configure the CMake environment

cmake [options] [build folder]

Option Parameter Description

CMAKE_INSTALL_P | Installation path Sets the path where the program will be installed.
REFIX Default: /usr/local

CFLAGS/ Compiler flags Custom compiler flags (e.g. 32bit on 64bit platform
CXXFLAGS CFLAGS=-m32)

Table 7: Additional cifxsample configuration options

Build all source modules
make all

Optional: Install the programs
make install

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 24/71

3.5.2 Compiling the cifX example program via IDE

As mentioned before, you must copy the entire example folder in your local workspace to open the
example project.

Start Eclipse and import the project as noted in section Using the Eclipse IDE on page 20.

Note: Before compiling the example, the library libcifx must be installed (see section
Compiling the cifX userspace library on page 18).

The default search path for the header is '/usr/local/include/cifx'. If another path is used, set the
include path to the specified one.

Right click the project cifxsample
Select Properties > C/C++ Build > Settings.
Under the tab Tool Settings > Directories you can set a new or additional include path.

Debug information output from the example program can be activated by defining the compiler flag
DEBUG (set compiler flags, see section Using the Eclipse IDE on page 20).

Option Parameter Description

DEBUG compiler parameters Enables debug information output. (Disabled by default)

Table 8: Additional cifxsample configuration options

Build the project

Use either the menu entry Project->Build All or a right click to the example project entry in
the ‘Project Explorer' view and chose Build Configurations->Build->All.

The Eclipse debug environment can be used after compiling the project. When the library libcifx is
built in debug version, it is also possible to step into the driver functions.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 25/71

3.6 Loading netX UIO driver module

Module loading / unloading

To load the UIO driver module, you need to run the following command (requires root):
modprobe uio_netx

Note: To automatically load the UIO driver module at system startup, check the manual of
your Linux distribution. Usually kernel modules loaded at startup are placed in
/etc/modules.

To unload the module run
modprobe —r uio_netx

Optional arguments

The uio_netx driver provides mapping of non-PCl devices by passing the appropriate arguments
(custom_dpm_addr, custom_dpm_len and custom_irg). For more information refer to section
Support for non-PCI devices on page 42. The module arguments are arrays, so it is possible to
pass a comma separated list of parameters.

Option Parameter Description

custom_dpm_addr ULONG Array Physical start address of the DPM (system dependent)
custom_dpm_len ULONG Array Length of the DPM (depends on the device)
custom_irq int Array Number of the interrupt line (0 = not connected)

Table 9: uio-netx optional arguments

Example parameter usage

The following command loads the kernel module and maps two cards, with a DPM memory
location at 0xD000O0 (16kB, IRQ5) and OXFECCO0000 (64kB, no IRQ).

modprobe uio_netx custom_dpm_start=0xD0000,0xFECC0000
custom_dpm_len=0x4000,0x10000 custom_irg=5,0

Using netX UIO Driver as user (non-root)

If you want to access the UIO driver with user privileges you will need to make sure the user has
read / write access to the following device nodes and files:

/dev/uio<n>
/sysl/class/uio/uio<n>/device/config

This can automatically be done by writing an udev rule (see example below):
/etc/udev/netx._rules
SUBSYSTEMS=="pci"",ATTRS{vendor}=="0x15cf"*,ATTRS{device}==""0x0000" ,MODE=""0666"", PROGRAM=""/b
in/bash —c ”chmod 0666 /sys/class/uio/uio%n/device/config’”""
An example of an udev rule (80-udev-netx.rules) is located on the CD under
/driver/templates/udev/ (see section CD contents on page 8). For standard use case (the rule file
will match all Hilscher cards) copy the rule file ‘80-udev-netx.rules’ to ‘/etc/udev/rules.d/’. To make
the changes take effect restart the udev system via ‘sudo udevadm trigger’ or unload and then
reload the kernel module uio_netx.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 26/71

3.7 Firmware and configuration file storage

3.7.1 Configuration file storage methods overview

Note: For a cifX device, firmware and configuration files that are not stored on the hardware,
must be loaded into the hardware each time the card is powered-up.

cifX cards do not use any Flash memory to store a firmware or configuration in the card. Each time
the card is powered-up all files (boot loader, firmware and configuration) must be loaded from the
host system into the card. This chapter describes where and how these files have to be stored.

To allow device-specific configuration the card need to be identified and the firmware need to be
stored on the host in a specific folder structure to create a unique relation between card and
configuration.

These folders reside under a global base folder. By default it is /opt/cifx' (can be changed during
driver initialization).
The driver supports four different types of configuration of a card, each with its specific folder
structure:
slotnumber (depends on the hardware, requires slotnumber switch on the hardware)
device and serial number
card name
single directory
During initialization, for each device, the driver
1. first checks for a folder structure matching the Slothumber,
2. then checks for a folder structure matching the device and serial number,
3. then checks for a folder structure matching the device name
4. finally checks for a configuration in the global single directory.

The first matching variant will provide the configuration and firmware. Features of the respective
methods are explained in the following.

(1) Slotnumber (requires a slotnumber switch on the hardware)

Advantage: less configuration update required in case of exchange of HW (maintenance)
Disadvantage: limited configuration variants (9 configuration variants)

The Slothumber serves to distinguish between 9 cifX cards installed in one PC. The Slotnumber
must be set at the cifX card using the "slothumber switch". While Slothumber 0 means, that the
slotnumber identification is ignored and the next identification method is used. Slotnumbers from 1
to 9 corresponds to the Slotnumber 1 to 9. The firmware and configuration file must reside in the
subdirectory /Slot_<1..9>/. For detailed information of the folder structure layout see section Device
identification via slotnumber (Slothumber switch) on page 28.

(2) device and serial number

Advantage: unlimited number of configuration variants
Disadvantage: exchange of HW requires configuration update

The firmware and configuration file must reside in the subdirectory /<Device Number>/<Serial
Number>/. For detailed information of the folder structure layout see section Device identification
via device and serial number on page 29.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 27171

(3) device name

Advantage: unlimited number of configuration variants

Disadvantage: The name depends on the driver’s enumeration. Depending on the connection type
(e.g. PCI) the operating system may report the devices in different order. Only recommended if
device enumeration order will not change.

The firmware and configuration file must reside in the subdirectory /<Device Name>/. For detailed
information of the folder structure layout see section Device identification via device name on page
30.

(4) single directory

Advantage: one configuration fits all, no configuration update necessary in case of HW exchange
Disadvantage: only one configuration possible

If only ONE cifX device needs to be supported by the system at the same time, a predefined global
directory can be used. The firmware and configuration file must reside in the subdirectory named

FW. For detailed information of the folder structure layout, see section Device identification via
single directory on page 31.

Note: How to setup the basic directory tree of the configuration file storage is described in
section Creating the directory tree of the configuration file storage on page 32. When
creating directories or files remember Linux is case sensitive.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 28/71

3.7.2 Device identification via slotnumber (Slotnumber switch)

The following table describes the different subdirectory levels, if the device provides a "Slotnumber
switch" which is used for the Slotnumber identification (typically a rotary switch).

Subdirectory Description
<BASEDIR> Base directory
Default: ‘/opt/cifx'’

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN)

deviceconfig Device specific configuration files

Slot_<1..9> If device provides a slotnumber switch, the files will be stored under:
Slot_<slotnumber switch set>. (Only if the slotnumber switch is not 0)

Contains the device.conf which holds the device specific settings
Note: This directory must contain the rcX base firmware if loadable modules are used.

channel<#> Channel specific files
- firmware file (*.nxf - e.g. cifxdpm.nxf)
- fieldbus configuration file (*.nxd - e.g. config.nxd)
- firmware loadable module file (*.nxo)

Note: Currently only channel O is supported

Table 10: Firmware and configuration file storage - Slotnumber switch

Sample directory structure for a cifX device identified by Slothnumber 2
+ <BASEDIR>/

|
| -- NETX100-BSL.BIN (bootloader)
|

| --+ deviceconfig
|
|--+ Slot_1

-1
--+ Slot_2
|

|-- device.conf (configuration file)

-—+ channelO
|
|-- cifxdpm.nxf
|-- config.nxd (Fieldbus database or warmstart.dat)

|

|

|

|

|

|--+ channell
|--+ channel2
|--+ channel3
|--+ channel4
|--+ channel5
+ Slot_3

+ Slot_4

+ Slot 5

+ Slot_6

+ Slot_7

+ Slot_8

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I--
==
I--
==
I--
==
|--+ Slot_9

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 32.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 29/71

3.7.3 Device identification via device and serial number

Device identification via the device and serial number are the default way to distinguish between
multiple cifX devices in one PC.

Note: <Device Number>/<Serial Number> are shown on the device hardware label.
Example:
Hardware Label Entry: 1250.100/ 20217
Directory Entry: '/1250100/20217"

The following table describes the different subdirectory levels, without using the slothumber switch:

Subdirectory Description
<BASEDIR> Base directory
Default: ‘/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN)

deviceconfig Device specific configuration files

<Device Number> Device number of the device (e.g. 1250100)

<Serial Number> | Serial number of the device (e.g. 20217)
Contains device.conf storing device specific settings
NOTE: This directory must contain the rcX base firmware if loadable modules are used.

channel<#> Channel specific files
- firmware file (*.nxf - e.g. cifxdpm.nxf)
- fieldbus configuration file (*.nxd - e.g. config.nxd)
- firmware loadable module file (*.nxo)

NOTE: Currently only channel 0 is supported

Table 11: Firmware and configuration file storage - Device and serial number

Sample directory structure for a cifX device with device number 1250100 and serial number
20217

+ <BASEDIR>/

|
| -- NETX100-BSL.BIN (bootloader)
|

| --+ deviceconfig

|
|--+ 1250100

|
|--+ 20217

|-- device.conf (configuration file)

--+ channelO
|
|-- cifXdps.nxf (Firmware)
|-- config.nxd (fieldbus database or warmstart.dat)

--+ channell
--+ channel2
-—+ channel3
--+ channel4
-—+ channel5

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 32.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation

30/71

3.74 Device identification via device name

Note: Device name depends on the driver's enumeration (cifX0, cifX1,...). Depending on the
connection (e.g. PCI) the operating system may change the order of reported cards
after system restart and so the driver does. Only recommended if device enumeration

order will not change.

The following table describes the different subdirectory levels, using device hame:

Subdirectory Description

<BASEDIR> Base directory
Default: ‘/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN)

deviceconfig Device specific configuration files

<device name> Device name e.g. cifX0

Contains the device.conf which holds the device specific settings

Note: This directory must contain the rcX base firmware if loadable modules are used.

channel<#> Channel specific files
- firmware file (*.nxf - e.g. cifxdpm.nxf)
- fieldbus configuration file (*.nxd - e.g. config.nxd)
- firmware loadable module file (*.nxo)

Note: Currently only channel O is supported

Table 12: Firmware and configuration file storage - device name

Sample directory structure for a cifX1 device
+ <BASEDIR>/

|
| -- NETX100-BSL.BIN (bootloader)
|

| --+ deviceconfig

|
|]--+ cifX0

-1
-—+ cifX1l
|

|-- device.conf (configuration file)

|--+ channelO
|
|-- cifxdpm.nxf
|-- config.nxd (Fieldbus database or warmstart.dat)

|
|
|
|
|--+ channell
|--+ channel2
|--+ channel3
|--+ channel4
|--+ channel5
-—+ cifX2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|]--+ cifX3

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the

configuration file storage on page 32.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Installation 31/71

3.7.5 Device identification via single directory

The following table describes the different subdirectory levels, using a single directory which has to
contain the firmware and configuration files.

Subdirectory Description

<BASEDIR> Base directory
Default: ‘/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN).

deviceconfig Device specific configuration files

FW If single directory is used, the search path is set to

<BASEDIR>/deviceconfig/FW

Contains the device.conf which holds the device specific settings

Note: This directory must contain the rcX base firmware if loadable modules are used.

channel<#> Channel specific files

= firmware file (*.nxf - e.g. cifxdpm.nxf)

= fieldbus configuration file (*.nxd - e.g. config.nxd)
= firmware loadable module file (*.nxo)

Note: Currently only channel O is supported

Table 13: Firmware and configuration file storage - Single directory

Sample directory structure for single directory usage
+ <BASEDIR>/

|
| -- NETX100-BSL.BIN (bootloader)
|

| --+ deviceconfig

I
|--+ FW
I

|-- device.conf (configuration file)

-—+ channelO
|
|-- cifXdps.nxf (Firmware)
|-- config.nxd (Fieldbus database or warmstart.dat)

-—+ channell
-—+ channel?2
-—+ channel3
--+ channel4
-—+ channel5

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 32.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Installation 32/71

3.7.6 Creating the directory tree of the configuration file storage
An easy way to setup the configuration file storage is to use the provided installation script
'install_firmware' located on the CD under /driver/scripts/.

The following steps show how to create the directory tree needed by the different configuration file
storage methods documented in the sections above starting on page 29.

Note: The next steps require the accomplishment of the preparation noted under section
Preparation on page 12.

Change to your project folder (see section Preparation on page 12)

(e.g.) cd /usr/src/driver.

Change into 'script’

cd ./script

First install the second stage boot loader by calling (root privileges are required)
Jinstall_firmware install

This creates the folder ‘fopt/cifx/deviceconfig' and copies the second stage boot loader to
'lopt/cifx/'

Depending on the chosen configuration file storage method, execute one of the following
commands (root privileges are required)

Device identification via device and serial number:

Jinstall_firmware add_device [device no] [serial no]
Device identification via slotnumber:

Jinstall_firmware add_slot_dir [slot no]
Device identification via single directory:

Jinstall_firmware create_single_dir

Note: This installation procedure only creates the directory structure, installs the boot loader
and adds a default configuration file.

To install an application specific firmware refer to section Configuration file storage
methods overview on page 26.

For further device configuration see section Device configuration (device.conf) on page
52.

Remember to adapt the permissions, in case of normal users should be able to access
files located in the configuration storage.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 33/71

4 Linux driver-specific information

The Linux driver needs some special initialization comparing to the standard Windows driver,
because it is not executed by the kernel at system startup.

The driver (libcifx) is linked to an application and needs to be configured correctly to work.

To enable the use of the cifX driver by an application, some special functions are provided. These
functions are described in the following chapters. Further the Linux driver supports also access to
devices via different hardware interfaces (e.g. SPI, ISA), for more information refer to Support for
non-PCI device on page 42.

Chapter Startup procedure of driver/library on page 50 describes the correct usage and sequence
of the functions.

Features
The user space driver libcifX provides debug output feature. The tracing can be enabled
during the driver’s initialization (see Trace Level, Structure CIFX_LINUX_INIT on page 34).
Depending on the trace level the following messages will be logged:
Trace Level = 0x00 — Tracing disabled
Trace Level = 0x01 — Debug messages will be logged
Trace Level = 0x02 — Information messages will be logged
Trace Level = 0x04 — Warning messages will be logged
Trace Level = 0x08 — Errors messages will be logged
Trace Level = OxFF — All messages will be logged
For debugging purposes it is sometimes useful to enable all debug messages.

By default the driver creates a log file in the driver's 'base directory’ (see Firmware and
configuration file storage on page 26). If the log file creation fails (e.g. no permissions to
create or write to a file in the configuration directory) the debug messages will be printed to
the console output.

Note: By default root can create and write to a log file only. To be able to log debug
messages created by an application started by a normal user, remember to
change the permissions of the driver’s configuration base directory (see section
Firmware and configuration file storage on page 26).

Restrictions

By default only root can access a cifX device

Note: libcifx (netX/cifX Toolkit) needs to be run as 'root' or with a user that has the
following rights:
=> read/write access to the PCI configuration registers
(i.e.'Isys/class/uio/uio<n>/device/config")
=> read/write access to devices '/dev/uio<n>'
=> Mapping of DPM to user space (see 'mmap' and 'ulimit -I')
=> read/write access to /dev/mem (for user added devices)

To be able to access a device as ‘normal user’ see section Loading netX UIO
driver module on page 25.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information

34/71

4.1 Additional structures

Some of the Linux specific functions need parameters provided through structures. The structures
and the meaning of the internal data are described in the following chapter.

4.1.1 Structure CIFX_LINUX_INIT

This structure is used to initialize the cifX driver.

Element Data type Description
init_options Int Driver Initialization options:
0 = CIFX_DRIVER_INIT_NOSCAN
Driver does not scan for available cards detected by the UIO driver (driver
handles only the user defined cards, see element user_cards)
1 = CIFX_DRIVER_INIT_AUTOSCAN
Driver scans for all available cards, which are detected by the UIO driver
initializes and adds them to the application.
2 = CIFX_DRIVER_INIT_CARDNUMBER
Driver scans for only one card (UIO device) specified by iCardNumber.
Independently of the number the Device name is set to 'cifX0'.
iCardNumber Int Index of card to initialize when
init_option is set to CIFX_DRIVER_INIT_CARDNUMBER
fEnableCardLocking | Int Ensures exclusive access to one specific cifX card for multiple applications.
NOTE: It does not synchronize concurrent access between multiple
applications. Synchronization for multiple applications need to be
implemented by the user (see Limitations on page 7).
fEnableCardLocking = 0 User application has to guarantee not to grant any
other applications access.
fEnableCardLocking <>0 Cards which are already accessed by other
applications will be ignored and therefore not enumerated.
(Useful option in mode CIFX_DRIVER_INIT_CARDNUMBER)
base_dir const char* Set the base directory of the driver,
Set to NULL to use the default directory (‘/opt/cifx’)
poll_interval unsigned long Polling interval in milliseconds [ms] for non-interrupt cards.
Used for Change of State (COS) detection
0 = default of 500ms
CIFX_POLLINTERVAL_DISABLETHREAD can be used to completely
disable COS polling
poll_priority Int Priority of the polling thread (for possible values see man page of
pthread_setschedparam) 0 = default (priority of the calling thread)
poll_schedpolicy Int Scheduling policy, need to be set when poll_priority is set
0 = SCHED_NORMAL (poll_priority 0)
1 = SCHED_FIFO (poll_priority 1..99)
2 = SCHED_RR (poll_priority 1..99)
poll_StackSize Int Stack size of the polling thread.

poll_StackSize specifies the number additional bytes to add to
PTHREAD_STACK_MIN (= 0x4000Bytes).

If poll_StackSize is set to 0 the default size +0x1000 byte is used.
Default Stack-Size: PTHREAD_STACK_MIN + 0x1000

trace_level

unsigned long

Set the trace level of the driver.
0x0000 = no trace information is created
OxFFFF = maximum trace information is created

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 35/71

Element Data type Description
user_card_cnt int Number of user cards to be manually added to the driver.
Devices are specified by the CIFX_DEVICE_T structure.
user_cards struct Pointer to an optional array of additional user card structures.
CIFX_DEVICE_ | Number of card structures in the array must be given in user_card_cnt.
T* For more information see section Structure CIFX_DEVICE_T on page 35.

Table 14: Structure CIFX_LINUX_INIT definition

4.1.2 Structure CIFX_DEVICE_T

This structure contains all information describing a cifX device. The structure needs to be filled in
the following cases:

Handling non-UIO devices

In case of a netX device, which is not detectable by the UIO driver, should be added to the
driver's control (for more information see section Support for non-PCI devices on page 42).

Controlling more than one UIO device, but not all that exist in the system

In this case neither the CIFX_DRIVER_INIT_CARDNUMBER nor the
CIFX_DRIVER_INIT_AUTOSCAN option can be used. Instead an array of the required cards
needs to be passed to the driver.

Thereby the requested cards, so called ‘User Cards’, are differentiated by the following two groups
UlO-Devices
Detected by the UIO driver (cifX PCI cards)
Non-UIO devices
Not detectable by the UIO driver

In case of a UIO-Device the information for the CIFX_DEVICE_T structure can be easily retrieved
by calling cifXFindDevice(). cifXFindDevice() fills the CIFX_DEVICE_T structure for the requested
device and returns. In case of a non-UIO device the structure needs to be filled by the user and
passed to the driver. In this case UlO-specific fields need to be invalidated by setting the values to
-1

CIFX_DEVICE_T data content

Element Data type Description
UIO device None UIO device
dpm unsigned char* Virtual pointer to card DPM
Filled by cifXFindDevice() Must be provided by the user
(e.g. via mmap()).For more
information refer to Support for non-
PCI devices on page 42
dpmaddr unsigned long Virtual pointer to card DPM
Filled by cifXFindDevice() Must be provided by the user. For
more information refer to Support for
non-PClI devices on page 42
dpmlen unsigned long Size of the DPM in bytes
Filled by cifXFindDevice() Must be provided by the user. For
more information refer to Support for
non-PCI devices on page 42
uio_num int UIO number of the device

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 36/71
Element Data type Description
UIO device None UIO device
Filled by cifXFindDevice() Not used set to "-1'
uio_fd int File handle to UIO device
Filled by cifXFindDevice() Not used set to '-1'
pci_card int PClI card handling
0 = Card is a non-PCI card with firmware in FLASH memory
(no reset during start-up required)
1 = Card is a PCI card, needs to be reset on every start
- Filled by cifXFindDevice() Not used set to "-1'
- Can be overwritten by user
force_ram int Force card storage behavior
0 = Auto-detect card storage (PClI = RAM, DPM = Flash)
1 = Force usage of RAM only on this card. (This will execute a HW reset and
download boot loader / Firmware on every start of the card)
- Filled by cifXFindDevice() Must be provided by the user
- Can be overwritten by user
notify PFN_CIFX_NOTIFY_EVENT | Optional user initialization function
Callback that is made at several stages when initializing a device. This
allows the user to setup DPM and timings if they are different from the netX
ROM Loader settings.
NULL = suppress callback
User provided | User provided
userparam | void* User definable information per device

User provided | User provided

Optional (requires the compiler flag CIFX_DRV_HWIF set, when compiling the user space library libcifx, see section
Compiling the cifX userspace library on page 18)

hwif_init Optional: User definable function. Initializes the hardware interface (may
be NULL). For more information refer to Hardware initialization via hwif_init
on page 45.
Not used set to NULL | User provided

hwif_deinit Optional: User definable function. De-initializes the hardware interface
(may be NULL). For more information refer to Hardware de-initialization via
hwif_deinit on page 45.
Not used set to NULL | User provided

hwif_read User definable function. Implements the read access to the netX
device. Function implementation highly depends on the hardware interface.
For more information refer to Hardware read access via hwif_read on page
46.
Not used set to NULL User provided

hwif_write User definable function. Implements the write access to the netX

device. Function implementation highly depends on the hardware interface.
For more information refer to Hardware write access via hwif_write on page
47.

Not used set to NULL User provided

Table 15: CIFX_DEVICE_T data content

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 37/71

4.2 Additional functions

This chapter describes functions which are available for the Linux version of the driver only. These
functions need to be used to initialize the driver to be usable inside an application.

Specific functions of the Linux driver:

Function Description
cifXDriverlnit() Driver initialization function, see cifXDriverlnit()) on page 38.
cifXDriverDeinit() De-initialization of the driver, see cifXDriverDeinit() on page 39,

xDriverRestartDevice() | Restarts the specified device, see xDriverRestartDevice() on page 39,
cifXGetDriverVersion() | Returns the driver and toolkit version, see cifXGetDriverVersion() on page 40,
cifXGetDeviceCount() | Returns the number of the detected UIO devices, see cifXGetDeviceCount() on page 40,

cifXFindDevice() Returns the information structure (CIFX_DEVICE_T) of the requested UIO device, see
cifXFindDevice() on page 41.

cifXDeleteDevice() Deletes a previously via cifXFindDevice() acquired device. see cifXDeleteDevice() on page 41.

Table 16: Linux cifX Driver: Specific functions of the Linux driver

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 38/71

4.2.1 cifXDriverlnit()

This function must be called before accessing any driver function. It initializes the driver and adds
the needed devices to the control of the libcifx shared library.

Function call
int32_t cifXDriverlinit(struct CIFX_LINUX_INIT* init_params)

Arguments
Argument Data type Description
init_params struct CIFX_LINUX_INIT_T* Initialization parameters (see section Structure
CIFX_LINUX_INIT on page 34 for details)

Return Values

CIFX_NO_ERROR (0) if the driver was successfully initialized.

Remarks

The driver initialization provides three different types, see element ‘init_options' in Structure
CIFX_LINUX_INIT on page 34.

Note: The given initialization option belongs only to UIO devices. In general user
defined Non-UIO devices (see Structure CIFX_DEVICE_T on page 35) given in
'user_cards' are not effected and will be always added to the driver's control.

CIFX_DRIVER_INIT_NOSCAN
The driver ignores all devices which are detected by the UIO driver.

The driver handles only the given User Cards (see element 'user_cards' in section
Structure CIFX_LINUX_INIT on page 34).

Use case: The application should not acquire every device found, instead specified ones
only.
CIFX_DRIVER_INIT_AUTOSCAN

The driver scans for all devices, which are detected by the UIO driver and adds them to the
driver's control.

Use case: The application should have access to all cards, found in the PC.
CIFX_DRIVER_INIT_CARDNUMBER

The driver scans for the requested device (UIO device) and adds it to the driver's control.
Use case: The application should have access to only one specific card (UIO device).

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 39/71

4.2.2 cifXDriverDeinit()

Un-initialize the driver and remove all devices from the control of the libcifx shared library. After
calling this function the application must not access any cifX Driver API function any more.

Function call

void cifXDriverDeinit(void)

Arguments

None

4.2.3 xDriverRestartDevice()

The function can be used to restart a netX board. The driver processes the same functions as on a
power-on reset (reset the hardware and download the second stage boot loader, firmware and
configuration files etc.).

A restart is necessary on PCl-based-netX boards, if a running firmware should be updated or
changed. Because on such boards the firmware is not stored in a FLASH file system and updating
the firmware while it is running in RAM is not possible.

Note: A restart is only performed, if no application has an open handle to the board or one of
its communication channels.

Function call
int32_t APIENTRY xDriverRestartDevice(CIFXHANDLE hDriver,
char* szBoardName,
void* pvData) ;
Arguments
Argument Data type Description
hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)
szBuffer String Identifier for the board.
(e.g. 'cifX<BoardNumber>")
pvData void* For further extensions can be NULL

Return Values

CIFX_NO_ERROR if the function succeeds.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 40/71

4.2.4 cifXGetDriverVersion()

This function returns the version of the cifX driver for Linux.

Function call

int32_t cifXGetDriverVersion (uint32_t ulSize, char* szVersion);

Arguments
Argument Data type Description
ulSize unsigned long Size of buffer referenced by parameter szVersion
szVersion char* Buffer to return driver version string

Return values

Return values

CIFX_NO_ERROR Memory mapping successful
CIFX_INVALID_BUFFERSIZE Size of supplied buffer is too small

4.2.5 cifXGetDeviceCount()

Query the number of available UIO devices. Device detection only works through the netX UIO
driver.

Function call
int cifXGetDeviceCount(void)

Arguments

None

Return values

Number of detected devices.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 41/71

4.2.6 cifXFindDevice()

Build a CIFX_DEVICE_T structure for a given device.

The structure can be used by an application if only some specific cards should be used. Therefore
the application has to add them manually to the driver as a user card, see section Structure
CIFX_LINUX_INIT on page 34.

This can be done by calling the function cifXDriverlnit() with the 'CIFX_DRIVER_INIT_NOSCAN'
option and passing the card information in the user_cards parameter.

Function call
struct CIFX DEVICE_T* cifXFindDevice(int num, int fCheckAccess)

Arguments
Argument Data type Description
num int Device number of the chosen device.
Range: 0..cifXGetDeviceCount()
int fCheckAccess Check if device is already used by another application
fCheckAccess = 0, do not check if already accessed
fCheckAccess = 1, check if device is already accessed

Return values

Pointer to the device information structure of the given device.

NULL, if the device number is invalid or not available or if fCheckAccess = 1 and the device is
already used by another application.

4.2.7 cifXDeleteDevice()

Delete a CIFX_DEVICE_T structure that was returned by cifXFindDevice(). This needs to be done
after the driver un-initialization to clean up all internally used administration data and allocated

memory areas.

Function call
void cifXDeleteDevice(stuct CIFX_DEVICE _T* device)

Arguments
Argument Data type Description
device struct CIFX_DEVICE_T* Pointer to a device returned by cifXFindDevice()

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 42/71

4.3 Support for non-PClI devices

The Linux cifX Driver provides the ability to access devices connected via several hardware
interfaces. In general, the supported devices can be grouped into so called memory-mapped
devices and non-memory-mapped devices. Since the driver is capable to detect PCl devices
autonomously only, other devices need to be published by the customer.

Note: The driver provides a plugin for netX devices that are connected via SPI under Linux
(spidev framework). For more information see Using the SPI plugin (Linux spidev
framework) on page 63.

Depending on the type of the device (memory-mapped or non-memory-mapped) the driver
provides the following integration possibilities:

Device type Integration interface Features / limitations / description

Memory-mapped Kernel Mode Driver uio-netx Features

DPM = No difference between custom and standard uio
device

= Interrupt support

= No additional initialization in user space (skips
adding user defined card)

Limitations

= Parameter need to be passed during driver startup
Memory mapped devices can easily passed to the
driver without any driver preparation.

For more information see section ISA or other memory-
mapped devices on page 43.

User Space Driver libcifx Features

= Independent of the uio_netx kernel module
Limitations

= No interrupt support

Memory mapped devices can easily passed to the
driver without any driver preparation.

For more information see section ISA or other memory-
mapped devices on page 43.

Non-Memory Mapped | User Space Driver libcifx Features
DPM » Depends on the customer’s implementation
Limitations

= Depends on the customer’s implementation

This method requires the implementation of dedicated
hardware read/write functions. For more information
see section Custom-specific hardware interface on
page 44.

Note: To be able to handle a non memory mapped
device the driver need to be build with the compiler
flag CIFX_DRV_HWIF set (see section Compiling
the cifX userspace library on page 18).

Table 17: Overview supported device types

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 43/71

4.3.1 ISA or other memory-mapped devices (DPM)

The netx-uio kernel mode driver is capable to detect PCI devices autonomously only. Other
memory-mapped devices like for example ISA devices do not provide any detection methods and
need to be published by the customer. The device can easily be integrated by passing the device-
specific-memory parameter to the driver. The parameter can be passed to the uio-netx kernel
module or the User Space Driver libcifx. For the differences of both methods see table Overview
supported device types on page 42. On ARM platforms the device tree can be used. For more
information how to parametrize the device tree see Using the Device Tree on page 61.

Memory-mapped device via kernel module uio_netx

The device-specific information can be passed via command line parameter during module
loading:

modprobe custom_dpm_addr=0xD0000 custom_dpm_len=0x4000 custom_irq=4

The above example adds a device with the DPM located at the physical address 0xD00OO,
DPM length of 16 KB and interrupt connected to IRQ line 4. For more information of the
parameter see section Loading netX UIO driver module on page 25.

In case the mapping succeeds, the driver creates a new uio_netx device which is accessible
via the user space library libcifx as common uio device.

For an example refer to Using UIO driver on page 60.

Memory-mapped device via user space library libcifx

Integration of a memory mapped device via a user space library requires the device
specification via Structure CIFX_DEVICE T (page 35). The filled structure need to be
passed to the drivers initialization routine cifXDriverlnit() via Structure CIFX_LINUX_INIT
(page 34).

The following table shows the important parameter of the CIFX_DEVICE_T structure. For
other parameter or general information refer to Structure CIFX_DEVICE_T on page 35.

Name Type Description

Dpm unsigned char* Virtual Pointer to the card’s DPM. The driver provides a helper function
(cifx_ISA_map_dpm()), mapping the physical address to the application’s
specific virtual memory. For more information refer to the Example: Driver
initialization for ISA device on page 59.

dpmaddr unsigned long Physical address to the card’s DPM (this parameter depends on the system
and the hardware configuration, for more information refer to the appropriate
hardware documentation).

Dpmlen unsigned long Size of the DPM in bytes (depends on the device, for more information refer
to the appropriate hardware documentation).

Table 18: Initialization parameter: Custom memory mapped device

For an example refer to Not using UIO driver on page 59.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 44/71

4.3.2 Custom-specific hardware interface

Note: To enable the following feature, the user space library needs to be built with the
compiler flag CIFX_DRV_HWIF (set), see section Compiling the cifX userspace library
on page 18.

Additional to Memory-mapped devices, the cifX Toolkit is capable to access netX-based hardware
via the cifXToolkit Hardware Function Interface. For more information refer to Fehler!
Verweisquelle konnte nicht gefunden werden..

Similar to a ‘non-UlO-memory-mapped Device’, the custom device needs to be specified via the
Structure CIFX_DEVICE_T (on page 35). Though, the custom hardware interface feature requires
an additional implementation of interface-specific read/write functions.

The hardware-specific read/write functions need to be specified per device, during driver
initialization (see hwif_read, hwif_write, Structure CIFX_DEVICE_T).

The following table shows the important parameter of the CIFX_DEVICE_T structure. For other
parameter or general information refer to Structure CIFX_DEVICE_T on page Structure
CIFX_DEVICE_T on page 35.

Name Type Description

dpm unsigned char* set to 0 (since no physical address exists)

dpmaddr unsigned long set to 0 (since the driver cannot access the device’s DPM
directly)

dpmlen unsigned long Size of DPM in Bytes (depends on the device, refer to the
hardware documentation)

userparam void* Optional: User parameter (may point to information required
for the hardware interface). If not used set to NULL

hwif_init PFN_DRV_HWIF_INIT Optional: Initializes the custom hardware interface

Note: Need to be implemented by customer (see section
Hardware initialization via hwif_init on page 45).
If not used set to NULL

hwif_deinit PFN_DRV_HWIF_DEINIT Optional: De-initializes the custom hardware interface

Note: Need to be implemented by customer (see section
Hardware de-initialization via hwif_deinit on page 45).

If not used set to NULL

hwif_read PFN_DRV_HWIF_MEMCPY | Reads a given number of bytes from the netX DPM via the
custom hardware interface.

Note: Need to be implemented by customer (see section
Hardware read access via hwif_read on page 46).
hwif_write PFN_DRV_HWIF_MEMCPY | Writes a given number of bytes to the netX DPM via the
custom hardware interface.

Note: Need to be implemented by customer (see section
Hardware write access via hwif_write on page 47).

Table 19: Initialization parameter: Custom hardware interface

In case of registered hardware functions (hwif_read, hwif write), the toolkit replaces the common
memory access (e.g. via memcpy()) by the appropriate access function.

The initialized structure need to be passed to the drivers initialization routine cifXDriverlnit() via
Structure CIFX_LINUX_INIT. For an SPI example application see SPISample, CD contents on
page 8).

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 45/71

4.3.2.1 Hardware initialization via hwif_init

This function needs to be implemented by the customer. The function needs to provide a complete
initialization of the specific hardware interface. If the function returns success (CIFX_NO_ERROR)
it must be guaranteed that is is possible to read from and write to the interface. Further, the
function implementation must be aware of its initialization state, since it may be called during
application runtime (e.g. in case of a reset via xDriverRestartDevice()). The passed device-specific
structure Structure CIFX_DEVICE_T, provides a tag called userparam, which enables passing of
interface-specific information and states.

This function is optional. In case initialization is not required set the hwif init in Structure
CIFX_DEVICE_T to NULL.

Function call
int32_t hwif_init (stuct CIFX _DEVICE_T* device)

Arguments
Argument Data type Description
device struct CIFX_DEVICE_T* Pointer to the device

Return values

CIFX_NO_ERROR on success

For all possible error values refer to the header file cifXErrors.h located in the cifX Driver Toolkit,
see Toolkit, CD contents on page 8.

4.3.2.2 Hardware de-initialization via hwif_deinit

This function needs to be implemented by the customer. The function needs to provide a complete
de-initialization of the specific-hardware interface. Further, the function implementation must be
aware of its initialization state, since it may be called during application runtime (e.g. in case of a
reset xDriverRestartDevice()). The passed device specific structure Structure CIFX_DEVICE_T
provides a tag called userparam, which enables passing of interface-specific information and
states.

This function is optional. In case de-initialization is not required, set the hwif_deinit in the Structure
CIFX_DEVICE_T to NULL.

Function call
void hwif _deinit (stuct CIFX DEVICE_T* device)

Arguments
Argument Data type Description
device struct CIFX_DEVICE_T* Pointer to the device

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 46/71

4.3.2.3 Hardware read access via hwif_read

This functions need to be implemented by the customer. The function needs to provide reading the
number of bytes given by ulLen from the DPM. pvAddr contains the offset where to start reading
from the DPM.

The passed device specific structure Structure CIFX_DEVICE_T provides a tag called userparam,
which enables passing of interface-specific information and states.

Function call

void* hwif_read (stuct CIFX DEVICE_T* device,
void* pvAddr,
void* pvData,
uint32_t ulLen)

Arguments
Argument Data type Description
device struct CIFX_DEVICE_T* Pointer to the device
pvAddr void* Offset in DPM where to read from
Note: This is a pointer to the DPM location where to
read from. This can be handled as an offset (unsigned
long) from the beginning of the DPM, if the parameter
dpmaddr is set to NULL (see Structure
CIFX_DEVICE_T on page 35). Otherwise dpmaddr
need to subtracted to get the offset.
pvData void* Pointer to memory where to store read data
ulLen uint32_t Length of data to read

Return values

Pointer to the read buffer passed into the function call (pvData).

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 47171

4.3.2.4 Hardware write access via hwif_write

This function needs to be implemented by the customer and has to write the number of bytes,
given by ulLen to the DPM start offset contained in pvAddr.

The passed device specific structure Structure CIFX_DEVICE_T provides a tag called userparam,
which enables passing of interface specific information and states.

Function call

void* hwif write (stuct CIFX _DEVICE T* device,
void* pvAddr,
void* pvData,
uint32_t ullLen)

Arguments
Argument Data type Description
device struct CIFX_DEVICE_T* Pointer to the device
pvAddr void* Offset in DPM where to write to
Note: This is a pointer to the DPM location where to
write to and it can be handled as an offset (unsigned
long) from the beginning of the DPM, if the parameter
dpmaddr is set to NULL (see Structure
CIFX_DEVICE_T on page 35). Otherwise dpmaddr
need to subtracted to get the offset.
pvData void* Pointer to a buffer containing the write data
ulLen uint32_t Length of data to write

Return values

Pointer holding the write address passed into the function (pvAddr).

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 48/71

4.3.3 The plugin interface of the driver

The plugin interface of the driver enables easy integration of different hardware interfaces. It is
build on the technique of the hardware access functions of the toolkit, see Custom-specific
hardware interface on page 44. Since the configuration becomes abstracted, the result is an easy
and generic way to handle various types of hardware and their interfaces. The driver is able to
automatically load the plugin and enumerate transparently the devices via the cifX API. The default
search path for plugins is (/opt/cifx/plugins/). A plugin is a dynamically loadable library and has to
provide the functions listed in the following table.

The driver is delivered with an example plugin for the spidev interface of the Linux Kernel, see
SPM_PLUGIN in the drivers build options (Compiling the cifX userspace library on page 18). For
configuration see Using the SPI plugin (Linux spidev framework) on page 63. In case of
incompatible frameworks see Custom-specific hardware interface.

Overview of the functions required to implement a plugin.

Function Description
cifx_device_count() Returns the total number devices available by this plugin
cifx_alloc_device() Returns a pointer to the filled device information (see Structure CIFX_DEVICE_T)
cifx_free_device() Frees the resources of the device allocated by cifx_alloc_device()
4331 cifx_device_count()

The function returns the total number of devices which are available by this plugin.

Function call

uint32_t cifx_device count(void)

Arguments

Argument Data type Description
-/- -/- -/ -

Return value

Returns to total number of devices available by this plugin.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 49/71

4.3.3.2 cifx_alloc_device()

The functions returns the information structure CIFX_DEVICE_T of the device identified by the
parameter num. The structure contains all required information how to access the device, see
Custom-specific hardware interface on page 44.

Function call
struct CIFX DEVICE_T* cifx_alloc_device (uint32_t num)

Arguments
Argument Data type Description
num uint32_t Number of the device which resources should be returned in the

device information structure. The returned pointer should be valid
for all num while

((return value of cifx_device_count() — 1) —num) >=0

Return value

Pointer to the device information structure of the device indexd [num].
NULL, if the device number is invalid or the allocation failed.

4.3.3.3 cifx_free_device()

The function frees all the device resources and the buffer that has been previously allocated by
cifx_alloc_device().

Function call
void cifx_free_device(struct CIFX _DEVICE T* ptDev)

Arguments
Argument Data type Description
ptDev struct CIFX_DEVICE_T* Pointer to Device structure previously allocated by
cifx_alloc_device()

Return value

No

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information

50/71

4.4 Startup procedure of driver/library

The driver start-up procedure can be controlled by the user, setting the appropriate initialization

flag (Structure CIFX_LINUX_INIT (init_options) on page 34).

The following three use cases are available:
CIFX_DRIVER_INIT_AUTOSCAN
Automatically add all found uio_netx-based devices and add user specified devices.
CIFX_DRIVER_INIT_CARDNUMBER
Add only one specific uio_netx-based device and add user specified devices.
CIFX_DRIVER_INIT_NOSCAN

Skip uio_netx device scan and add only user specified devices.

4.4.1

Startup via AUTOSCAN or CARD number

Application

libcifx.so uio_netx.ko

cifXInitDriver()

(AUTOSCAN / CARDNO)

»

>

Setup cifX Toolkit /
Helper Threads

Query UIO and map DPM

If CIFX_LINUX_INIT.init_option:

= CIFX_DRIVER_INIT_AUTOSCAN
this will be done for every available
netx_uio instance.

Add Device to
cifXToolkit control

Add user defined devices
to cifXToolkit control
(,user_cards")

xDriverOpen()

return CIFX_NO_ERROR

xChannelOpen()

v

= INIT_CARDNUMBER
this will be done once and only for the
specified card.

AN

Figure 3: Initialization of libcifx using CIFX_DRIVER_INIT_AUTOSCAN / CIFX_DRIVER_INIT_CARDNUMBER

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Linux driver-specific information

51/71

4.4.2 Startup via CIFX_DRIVER_INIT_NOSCAN

Application

libcifx.so

cifXInitDriver()
(NOSCAN)

Add user defined devices
to cifXToolkit control
(,user_cards")

|

I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
=<

xDriverOpen()

return CIFX_NO_ERROR

xChannelOpen()

Figure 4: Initialization of libcifx using CIFX_DRIVER_INIT_NOSCAN

I S

etup cifX Toolkit /
elper Threads

Iw

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Linux driver-specific information 52/71

4.5 Device configuration (device.conf)

Parameters like a unique alias name and interrupt support can be configured per device. The
configuration file must be named 'device.conf'. Where to place the configuration file, depends on
the chosen configuration file storage method.

Device identification via slothumber (page 28)

‘fopt/cifx/deviceconfig/Slot_[no]/device.conf'
e.g. '/opt/cifx/deviceconfig/Slot_1/device.conf’

Device identification via device and serial number (page 29)

'lopt/cifx/deviceconfig/[device no]/[serial no]/device.conf'
e.g. 'lopt/cifx/deviceconfig/1250100/20217/device.conf’

Device identification via device name (page 30)

'lopt/cifx/deviceconfig/[device name]/device.conf'
e.g. 'lopt/cifx/deviceconfig/cifX0/device.conf'

Device identification via single directory (page 31)

'lopt/cifx/deviceconfig/FW/device.conf'

The file may contain the following keys:

Key Datatype Description
Alias char[16] Alias name for the device. Must be less than 16 characters
Irq String Enable/Disable IRQ on the device

'no’ =IRQ disabled

'ves' =IRQ enabled

Irgprio Int Priority of the ISR handler thread (0 = default (priority of the calling thread)
see Linux man pages pthread_attr_setschedparam

irgsched String Setup alternate ISR scheduling algorithm
See Linux man pages pthread_attr_setschedpolicy

'fifo' = FIFO scheduling (see SCHED_FIFO -> irqprio 1..99)
rr' = Real-Time Scheduling (see SCHED_RR -> irgprio 1..99)

Dma String Enable/Disable DMA support of the device
'no’ =DMA disabled
'ves' =DMA enabled
Note: DMA support needs also to be enabled in the uio_netx kernel module,
for more information see sections Compiling the UIO kernel module during
kernel build (page 14) and Compiling the UIO kernel module (page 16).

Eth String Enable/Disable Virtual Ethernet Interface support of the device

'no' = Ethernet Interface disabled

'ves' = Ethernet Interface enabled

Note: This feature requires a firmware running on the PC card cifX that provides an
extra channel supporting a dedicated stack to transport Raw-Ethernet data (for more
information see section netX-based virtual Ethernet interface on page 54)

Table 20: device.conf parameters

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 53/71

Sample device.conf

#Sample device configuration file
al 1as=PROFIBUS

irg=no

irgprio=1

irqsched=fifo

dma=no

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 54/71

4.6 netX-based virtual Ethernet interface

Note: This feature requires a firmware running on the PC card cifX that provides an extra
channel supporting a dedicated stack to transport Raw-Ethernet data.

The libcifx user space library provides an extension to create and serve a virtual Ethernet device
for common network application usage.

The virtual network adapter is based on the TUN/TAP driver.

46.1 Features

Polling Mode

Simultaneous access of the PC card cifX from cifX driver and the corresponding Ethernet
device

4.6.2 Requirements

cifX Device Driver V1.0.3.0 or later

Firmware with appropriate Ethernet packet APl as specified in section “Ethernet Protocol API
in Ethernet (NDIS) Mode* in reference [3].

Hardware: cifX PCI/PCle

4.6.3 Limitations

Performance:

Max. TCP/IP throughput (send/receive): 42-49 MBit/s / 11-17 MBit/s.

Note: The throughput highly depends on the running firmware and the fieldbus configuration.
Network packets:

Network packet type indication is not configurable. Since the libcifx driver does no packet
filtering (Multicast, Broadcast, ...) the types of delivered packets depends on the firmware.
For detailed information about the set of provided network packets refer to the
documentation of the firmware which will be installed.

MAC Address:

The device MAC address is not configurable and therefore bind to a fixed MAC address. For
more information refer to documentation of the firmware which will be installed. The fieldbus
stack running on the netX will hold its own MAC address.

The application/user must have CAP_NET_ADMIN privileges

The Ethernet device lifetime is bind to applications lifetime, which initializes the driver
Ethernet device will disappear if a device reset is executed

Application must not access the communication channel used for raw Ethernet access

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 55/71

46.4 Overview

The following figure shows an example application and all the required components and how they
are layered and interact.
Application overview

Network Requests
Common cifX APl Requests

User application #2
(common network access)

User application #1
(fielbus access)

socket interface

cifX Network Extension
Virtual Ethernet Device

Handli
anng. 0S socket API
libcifx.so netx_tap cifX Virtual Network Deviceﬁ

+ |

I
! | | D | User Space
; - I I l CI*X ” | Kernel Space

| l creates

v v !

uio_netx.ko TUN/TAP driver Linux TCP/IP stack
Hardware

CH#1

I

MACH1 | MAC#2

CH#0

Raw-Ethernet Channel

Figure 5: Virtual cifX network interface — Application overview

cifX Device

The netx_tap module is an extension of the user space library libcifx and manages the virtual
Ethernet iterface handling. In case of cifX-Ethernet support is enabled, see section Virtual cifX
Ethernet interface setup on page 56, the driver searches for an appropriate channel providing
Raw-Ethernet support. If a channel is detected the netx_tap extension attaches via the cifX API
(libcifx) and creates a virtual network interface 'netx_tap device’.

The creation of the virtual network interface and all of its required initialization is done by the
TUN/TAP driver. During runtime the netx_tap module transfers the network data from the cifx
device to the netx_tap device and vice versa.

From the application point of view network requests are routed through the Linux network API
through the TUN/TAP driver over the libcifX to the device.

It is also possible to access the device via the common cifX API in parallel.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Linux driver-specific information 56/71

4.6.5 Virtual cifX Ethernet interface setup

Prerequisites

Make sure to configure at least one card to run a firmware providing the Raw-Ethernet support, see
section Firmware and configuration file storage on page 26.

Setup

Build the user space library libcifx providing the cifX Ethernet extension

Build and install the user space library libcifx with Ethernet support enabled, see
section Compiling the cifX userspace library on page 18.

Jconfigure —enable-cifxethernet

Enable Ethernet support for the device providing the firmware with an extra
communication channel for Raw-Ethernet Support, see section Device configuration
(device.conf) on page 52.

eth=yes
Start an application which initializes the driver

Note: The initialization options (see cifXDriverlnit() on page 38) must not skip the
device providing the Raw-Ethernet interface.

Start network application accessing the cifx Ethernet interface

After driver initialization the virtual cifX Ethernet device should be present (see ifconfig -a).
The device is named as its parent device (e.g. parent device cifx3 -> Ethernet interface cifx3)

Optional

Allow non-root users to start the application

Note: By default root can create a virtual ethernet interface only.

By default root can create a cifX Ethernet interface only. To be able to run the
application as non-root user, add the CAP_NET_ADMIN capability to your application

setcap cap_net_admin+pe [name of the application] (root required)
Automatic interface startup and configuration

Note: By default the network interface will not appear until it is configured and enabled
by the administrator (root) e.g. via ifconfig. This interface setup can be skipped by
adding an udev rule which automatically configures the interface.

Add udev rule, which automatically configures the Ethernet interface. A template is
located on the CD (/driver/templates/udev/80-udev-cifxeth.rules, see section CD
contents on page 8).

cp 80-udev-cifxeth.rules /etc/udev/rules.d/

The previously installed rule file refers to a script named cifxeth, which provides the
device start and configuration. The template udev rule estimates the configuration
script to be located under /etc/init.d/.

cp cifxeth /etc/init.d

Customize the start and configuration script to your own needs. The provided template
(cifxeth) will enable DHCP for every cifX Ethernet interface.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Using SYCON.net to configure the fieldbus system 57/71

5 Using SYCON.net to configure the fieldbus system

The Hilscher fieldbus hardware has to be configured by a Windows application called SYCON.net.
SYCON.net is based on the FDT/DTM concept and generates the configuration files for the
hardware. It is also able to update the firmware for a specific card.

Please use the following steps to create a configuration:
Install SYCON.net
Open SYCON.net and create a configuration

Store the SYCON.net configuration project and export the configuration from SYCON.net into
a so called database file (NXD).

Copy the database and the firmware files to the device configuration directory (see section
Firmware and configuration file storage on page 26).

Now start/restart the cifX Linux driver. This will load the firmware and configuration into the
cifX card.

5.1 Remote access via TCP/IP-Server
SYCON.net is also able to connect to a remote device supporting the Hilscher 'cifX Diagnostics
and Remote Access' functions.

The driver CD also includes a standalone TCP/IP server example (citXTCPServer), offering access
to a remote system with an installed CIFX hardware.

The example can be found in the examples directory of the Linux driver CD.

Note: The TCP/IP server example exclusively accesses the remote CIFX hardware without a
running user application on the Linux (remote) system.
It can be used to test fieldbus configurations and running fieldbus diagnostics from
SYCON.net.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver 58/71

6 Programming with the cifX Linux Driver

6.1 Example: Generic driver initialization

The cifX Linux driver offers the same interface described in the CIFX API. Therefore the CIFX API -
Application Programming Interface manual (see reference [1]) can be used. This manual describes
the driver functions, error codes and shows some program examples.

Note: As the driver is contained in the library linked to your application, you will need to
initialize the driver by a calling the function 'cifXDriverlnit' and 'cifXDriverDelnit'.

Initialization example
struct CIFX_LINUX_INIT init =

{
.init_options = CIFX_DRIVER_INIT_AUTOSCAN, // Find all UIO devices automatically
- iCardNumber =0, // not used when Init_options set to AUTOSCAN
.fEnableCardLocking = O, // do not lock card
-base_dir = NULL, // use default (Vopt/cifx/)
-poll_interval =0, // use default poll interval (500ms)
-poll_StackSize =0, // used default size (0x5000 Byte)
-trace_level = 255, // Enable all debugging outputs to log file
.user_card_cnt =0 // no user defined cards

.user_cards NGLL, // not used

/* First of all initialize toolkit */
long IRet = cifXDriverlnit(&init);

/* TODO: Insert your application here */

citXDriverDeinit();

The installation CD includes an 'Example’ directory with Linux-specific examples.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver 59/71

6.2 Example: Driver initialization for ISA device
6.2.1 Not using UIO driver

The following example shows how to initialize the driver to map an ISA device passed via user
space liberary libcifx.

struct CIFX DEVICE_T tlISADevice = {0};

struct CIFX_LINUX_INIT tDriverinit = {0};

tISADevice.dpmaddr = 0xD0O000; /* physical address to DPM of the ISA device, need to */
/* be set according to the jumper settings */
/* NOTE: for more information of the address setup */
/* (Jumper settings) refer to hardware’s documentation */

tiISADevice.dpmlen = 0x4000; /*!< length of DPM in bytes, depends on the device */

/* since device is not a uio device and no pci card invalidate the following parameter */

tISADevice.uio_num = -1; /*1< uio number, -1 for non-uio devices */

tI1SADevice.uio_fd = -1; /*1< uio file handle, -1 for non-uio devices */

/* Open the system memory Ffile (/dev/mem) */

/* Required to map the memory of the ISA device. */
if ((IISAfd = cifx_ISA _open())<0) {
printf(""Error opening the system memory (%s)
return -1;
}
printf(""Try to map the physical dpm address to a virtual memory\n');
if ((fSucess = cifx_ISA map_dpm(ilSAfd,
(void**)&tISADevice.dpm,
tISADevice.dpmaddr,
tISADevice.dpmlen))<0) {
printf("'Error mapping dpm (%s)!\n", strerror(errno));
cifx_ISA close(il1SAfd);
return -1;
} else {

/* setup the standard driver initializaion structure */
tDriverlnit.init_options = CIFX _DRIVER INIT_NOSCAN; /* NOSCAN since we are not */
/* interested in other cards */
1; /* set user card count to 1 since we pass one */
/* user card */
&tlSADevice; /* the previously prepared ISA device */

tDriverlnit.user_card_cnt

tDriverlnit._user_cards

/* initialize driver */
IRet = cifXDriverlnit(&tDriverlnit);

if (CIFX_NO_ERROR == IRet) {
/* TODO: Insert your application here */
citXDriverDeinit();
iifx_lSA_unmap_dpm(tlSADevice.dpm, tiISADevice.dpmlen);

}
cifx_ISA close(fd_isa);

For an ISA example application see ISASample, CD contents on page 8.

Note: Using this method does not allow using interrupt mode on ISA devices.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver 60/71
6.2.2 Using UIO driver

The following example shows how to initialize the driver to map an ISA device passed via the
uio_netx kernel mode driver.

1. Pass ISA card to uio driver:
modprobe uio_netx user_dpm_start=0xD0000 user_dpm_len=0x4000 user_irqg=5

2. Initialize driver as required (e.g. AUTOSCAN for devices)
struct CIFX_LINUX_INIT init =

{
.init_options = CIFX_DRIVER_INIT_AUTOSCAN, // Find all UIO devices automatically
- iCardNumber =0, // not used when Init_options set to AUTOSCAN
.fEnableCardLocking = O, // do not lock card
-base_dir = NULL, // use default (Vopt/cifx/)
-poll_interval =0, // use default poll interval (500ms)
-poll_StackSize =0, // used default size (0x5000 Byte)
.trace_level = 255, // Enable all debugging outputs to log file
.user_card_cnt =0, // no user defined cards
.user_cards = NULL, // not used

}.

’/* First of all initialize toolkit */
long IRet = cifXDriverlnit(&init);

/* TODO: Insert your application here */

citXDriverDeinit();

Note: This method does allow using interrupt mode on ISA devices.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver 61/71
6.2.3 Using the Device Tree

Note: This method requires appropriate kernel configuration. Make sure that your kernel
configuration has set CONFIG_OF=y.

For Linux operating system on embedded ARM-based architecture, the device tree is a common
way to describe the hardware components and its configuration. The uio-netx kernel module
provides support for device tree initialization. A sample configuration is located under
“/driver/templates/netx.dtsi”.

The following table show the available parameter.

Name Values Description

compatible “hilscher,uio-netx” Do not change!
Name of the driver to be load, always set to “hilscher,uio-netx”

reg <[DPM address] [size]> Physical address to the DPM of the card and size of the card (this
parameter depends on the system and the hardware configuration).

reg = <0xF8034000 0x10000>;

interrupt-names | “card” Do not change!
Name of the interrupt resources if IRQ pin is provided, e.g.
interrupt-names = “card”;

interrupts <[number] [flags]> Only valid if interrupt-names is set to “card”
Interrupt number and flags e.g.
interrupts = <168 IRQ_TYPE_LEVEL_HIGH>;

dma 0,1 Enable (1) / disables (0) DMA e.g.
dma = <1>;
startuptype “flash”,”ram”,"auto”,"donttouch” | Specifies the startup behavior:

flash = treat as flash based device

ram = treat as RAM based device

auto = auto detection (RAM or Flash based)

donttouch = no special initialization treatment at startup
e.g.

startuptype = “auto”;

alias variable An alias how the device can be identified via the driver API

Alias = “mycard”;

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver 62/71

6.3 Example: Driver initialization for custom hardware
interface

6.3.1 Using the hardware read/write abstraction

The following example shows how to initialize the driver to be able to communicate via custom
hardware interface. For an SPI example application see SPISample, CD contents on page 8.

void* CustomHwlFRead(struct CIFX_DEVICE_T* ptDev, void* pvaddr,
void* pvdata, uint32_t ullLen)

//T0DO: Need to be implemented by the customer
/* read the given number of bytes from the DPM */

return pvdata; /* return destination address */

}

void* CustomHwlFWrite(struct CIFX_DEVICE_T* ptDev, void* pvaddr,
void* pvdata, uint32_t ullLen)

//T0DO: Need to be implemented by the customer
/* write the given number of bytes to the DPM */

return pvaddr; /* return destination address */
}
int main(Q)

struct CIFX DEVICE_ T tCustomDev = {0};
struct CIFX_LINUX_INIT tDriverlnit = {0};

0x00; /* not used since address is not memory mapped */
0x10000; /*!< length of DPM in bytes, depends on the device */

tCustomDev .dpmaddr
tCustombDev.dpmlen

/* since device is no uio device and no pci card invalidate the following parameter */
tCustomDev.uio_num = -1; /*1< uio number, -1 for non-uio devices */
tCustombDev.uio_fd = -1; /*1< uio file handle, -1 for non-uio devices */

/* custom hardware interface initialization */

tCustomDev.hwif_init = NULL; /* we need no initialization of the interface */
tCustomDev._hwif_deinit NULL; /* we need no initialization of the interface */
tCustomDev.hwif_read CustomHwlFRead; /* custom read function */
tCustomDev._hwif_write CustomHwlFWrite; /* custom read function */

/* setup the standard driver initializaion structure */
tDriverlnit.init_options = CIFX DRIVER_INIT_NOSCAN; /* NOSCAN since we are not */
/* iInterested iIn other cards */
1; /* set user card count to 1 since we pass 1 user card */
& tCustomDev; /* the previously prepared device */

tDriverlnit.user_card_cnt
tDriverlnit_user_cards

/* initialize driver */
IRet = cifXDriverlnit(&tDriverlnit);
if (CIFX_NO_ERROR == IRet) {
/* TODO: Insert your application here */

cifXDriverDeinit();
}

return O;

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Programming with the cifX Linux Driver

63/71

6.3.2 Using the SPI plugin (Linux spidev framework)

To build and install the plugin, enable the SPM_PLUGIN option if compiling the libcifx library, see

Compiling the cifX userspace library on page 18.

By default the spidev plugin installation path will be “/opt/cifx/plugins/”. Therefore the

configuration path results in “/opt/cifx/plugins/spm-plugin/”.

For each device, a configuration file needs to be created, named config followed by its unique
index config[index] in the plugin specific configuration directory (e.g. /opt/cifx/plugins/spm-

plugin/config0).

The following options are available.

Parameter Description

Device Name of the SPI device to open -> see Linux spidev framework
e.g. /dev/spidev0.0
Device=spidev0.0

Speed Maximum speed to configure the driver
e.g. 25Mhz
Speed=25000000
Mode Mode to be setup (0 to 3)
Mode=3
ChunkSize Chunk size (maximum size of transfer after which a new transfer will be automatically

setup in bytes). If set to 0, no transfer splitting will be executed.
e.g. Split transfers in case it is larger than 250 byte
ChunkSize=250

Irq Path to irq file
e.g. /sys/class/gpio/gpiol/value

Sample

config0 for one device accessible in polling mode via the spidev0.0 interface. The speed is set to

25Mhz, Mode=3 and no transfer splitting is executed.

Device=spidev0.0
Speed=25000000
Mode=3
ChunkSize=0

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

Question and answers 64/71

7 Question and answers

Troubleshooting Instruction

Try to solve the problem in the order of the noted solutions following below.

7.1 cifX Device Driver
7.1.1 Failed to install driver via build script

Make sure that the path to your project folder does not contain any whitespaces.

In case the path does not contain any whitespaces refer to the console output and analyze the
given error message. In case of an imprecise error message try to install the driver manually. This
might give a more detailed description.

How to build the user space library manually - Compiling the cifX userspace library on page
18

How to build the kernel modul uio_netx - Compiling the netX UIO kernel module on page 14

7.1.2 It is not possible to run any script located on the CD

Some files of the driver package provide special functions. E.g. the scripts are marked as
executable. Extracting the sources under another operating system than Linux may clear such
attributes and permissions. Therefore make sure to choose the ‘.tar.bz’ archive of the driver,
located on the CD and extract it under Linux, see section Preparation on page 12.

7.1.3 Failed to load the uio_netx kernel module

Note: To be able to load the kernel module root privileges are required.

Refer to the error message returned when loading the module.

Make sure the required uio module is already loaded (dump the list of the currently loaded
modules)

Run the Ismod command.
Refer to information kept in the kernel log.
Print the kernel log message (e.g. via dmesqg).

7.1.4 Unable to access or find a device

Refer to the log file of the driver

How to enable the drivers log file — see section Linux driver-specific information on page 33.
Verify to have the correct permissions to access a device.

Refer to the restrictions listed in section Linux driver-specific information on page 33.

Failed to map the DPM

Go to section Failed to map the DPM of a device on page 65.

Make sure the no other application is running and already accessing the device.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Question and answers 65/71

7.1.5 Failed to map the DPM of a device

To allow mapping of the DPM to a user application, make sure the application is allowed to mmap
enough memory (at least 64 Kbyte). You can check the current memory lock limit using the
following command, which returns the maximum possible mapped memory in kB: ulimit -I

7.1.6 cifX device is not correctly configured

The device appears without or with the wrong firmware/configuration being flashed
Make sure the device configuration is correctly setup.
Refer to the cifX log (cifX[x].log) file located in the driver’s configuration directory.

Refer to the driver's log file and make sure according to the chosen configuration method,
the appropriate folder structure is created. For more information see section Firmware and
configuration file storage on page 26.

If no driver log file can be found — see section No log file of the user space driver is created
on page 65.

7.1.7 No log file of the user space driver is created

If the driver’s tracing feature is enabled, by default the driver tries to create a log file in the driver's
configuration directory. If this fails the driver will print the debug messages to the console. Error
messages, which appear before log file creation, will be printed to ‘stderr’.

How to enable the drivers log file — see section Linux driver-specific information on page 33.
Make sure to have to correct access rights to the driver’s configuration directory (read+write!)

7.1.8 Failed request DMA state or to exchange IO-data via DMA

DMA support needs to be enabled during build of both driver components
Make sure to enable DMA support during built of the kernel module uio_netx
Compiling the netX UIO kernel module on page 14
Make sure to enable DMA support during built user space driver libcifx
Compiling the cifX userspace library on page 18

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Question and answers 66/71

7.2 netX-based virtual Ethernet interface
7.2.1 Failed to create a virtual Ethernet interface

Note: A virtual Ethernet interface will be created during the driver’'s initialization and its
lifetime is bind to the applications lifetime, which initializes the driver.

Refer to the error message printed to stderr or the cifX log file.
Make sure to enable the Ethernet extension when building the user space library libcifx.

How to build the user space library manually - Compiling the cifX userspace library on page
18.

Ethernet support needs to be enabled per device. Make sure to enable Ethernet support on
the device with the firmware providing the Raw-Ethernet channel.

Refer to Device configuration (device.conf) on page 52.
Make sure to have the correct permissions to be able to create a Virtual Ethernet interface.
see CAP_NET_ADMIN - section Virtual cifX Ethernet interface setup on page 56.

If the previous steps does not solve the problem, go on with section No cifX Ethernet device
appears on page 66.

7.2.2 No cifX Ethernet device appears
The device may already be created but still not active. An Ethernet interface still needs to be
enabled by the administrator.

Make sure the application which initializes the driver is running without any errors.

Go to section Failed to create a virtual Ethernet interface on page 66.

Verify if the interface is already created by running the command ifconfig —a

If device is not present go on with Failed to create a virtual Ethernet interface on page
66.

If device is present verify the automated setup and configuration - Virtual cifX Ethernet
interface setup on page 56.

7.2.3 No network access although device successfully created

On some distributions, configuring more than one network adapter to the very same subnet
may lead into communication errors

Make sure to configure only one adapter per subnet

7.2.4 Network adapter disappears during device reset

When resetting a device or the system channel all of its channels will be re-initialized. Therefore a
reset of a device, offering a virtual cifX Ethernet Interface, as a consequence, also restarts the cifX
Ethernet interface and all connections using the Ethernet interface get interrupted.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Appendix 67/71

8 Appendix
8.1 List of tables

Table 1: List of revisions
Table 2: CD cONtentsoccuveeeeeeeiiiiiiieeeeenn
Table 3: Terms, abbreviations and definitions...
Table 4: References to documentsc.c.cc.ee

Table 5: Additional libCifx coONfIgUIation OPLIONS.........ooii i et e e et e e e e e s e e e e e e e e e nneeeeeas
Table 6: Additional libCifx CONfIGQUIAtioN OPLIONS.iiiiiii it e e e e s s e e e e e e s e et e e e e e e e eanaeraees
Table 7: Additional cifxsample configuration options
Table 8: Additional cifxsample configuration options
Table 9: Ui0-NEtX OPLIONAl AIQUMIENTSuiiiiiii e ettt e et e e e e e e e e e e e e st e e e e e e e s s stb e et eaeeessastbeaeeeeeesaatnsbeeeaeessansssbaees
Table 10: Firmware and configuration file storage - Slotnumber switch
Table 11: Firmware and configuration file storage - Device and serial NUMDEr............ccuiiiiiiiiiii e 29
Table 12: Firmware and configuration file Storage - deviCe NAMEcooii i
Table 13: Firmware and configuration file storage - Single directory
Table 14: Structure CIFX_LINUX_INIT definition
Table 15: CIFX_DEVICE_T data CONteNt.........ccccvvviiieeeeiiiiiiieee e eeiiiviee e
Table 16: Linux cifX Driver: Specific functions of the Linux driver.................
Table 17: Overview supported deviCe tyPesS.......cccvviiieeeeiiiiiiiieee e cciiieeaee e
Table 18: Initialization parameter: Custom memory mapped device
Table 19: Initialization parameter: Custom hardware INTErfACEooiii i
Table 20: deVICE.CONT PATAMEBLEIS e ee ettt e oottt e e e e e e e at bttt eee e e e e atbeeeeeaeesaanbbeeeeeaeesaannnsseeeaaeeaannnnreeean

8.2 List of figures

Figure 1: LinUuX CIFX ArVEr @rCRItECIUIEuviiiiii et e e e e et e e e e e e s s et eeeaeessesbtbe et aeeeessatbaeeeaeeesannees 5
[1o [0 R ol [o Y | B e [aT o To o] £ =T SRRSO UPRPRN 20
Figure 3: Initialization of libcifx using CIFX_DRIVER_INIT_AUTOSCAN / CIFX_DRIVER_INIT_CARDNUMBER........... 50
Figure 4: Initialization of libcifx using CIFX_DRIVER_INIT_NOSCAN

Figure 5: Virtual cifX network interface — APpliCAtION OVEIVIEWciiiiiiiiiii ettt e et eee e e e e e

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Appendix 68/71

8.3 Legal Notes

Copyright
© Hilscher Gesellschaft fiir Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
lllustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft fir Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Appendix 69/71

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fission processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Warranty

Hilscher Gesellschaft fir Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Appendix 70/71

the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft fir
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

cifX Device Driver | Linux
DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public © Hilscher, 2009-2019

Appendix

71/71

8.4 Contacts

Headquarters

Germany

Hilscher Gesellschaft fir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.

69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@bhilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777

E-Mail: info@hilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@bhilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnham, Gyeongdgi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-Mail: info@bhilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

cifX Device Driver | Linux

DOCO090201DRV11EN | Revision 11 | English | 2019-09 | Released | Public

© Hilscher, 2009-2019

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Overview
	1.4 Requirements
	1.5 Features
	1.6 Limitations
	1.7 CD contents
	1.8 Terms, abbreviations and definitions
	1.9 References to documents

	2 Licensing terms
	3 Installation
	3.1 Prerequisites
	3.2 Preparation
	3.3 Installation of the driver in one step
	3.4 Single step installation process
	3.4.1 Compiling the netX UIO kernel module
	3.4.1.1 Compiling the UIO kernel module during kernel build process
	3.4.1.2 Compiling the UIO kernel module only

	3.4.2 Compiling the cifX userspace library
	3.4.2.1 Using the console (CMake)
	3.4.2.2 Using the Eclipse IDE

	3.5 Compiling the example programs
	3.5.1 Compiling the cifX example program via console
	3.5.2 Compiling the cifX example program via IDE

	3.6 Loading netX UIO driver module
	3.7 Firmware and configuration file storage
	3.7.1 Configuration file storage methods overview
	3.7.2 Device identification via slotnumber (Slotnumber switch)
	3.7.3 Device identification via device and serial number
	3.7.4 Device identification via device name
	3.7.5 Device identification via single directory
	3.7.6 Creating the directory tree of the configuration file storage

	4 Linux driver-specific information
	4.1 Additional structures
	4.1.1 Structure CIFX_LINUX_INIT
	4.1.2 Structure CIFX_DEVICE_T

	4.2 Additional functions
	4.2.1 cifXDriverInit()
	4.2.2 cifXDriverDeinit()
	4.2.3 xDriverRestartDevice()
	4.2.4 cifXGetDriverVersion()
	4.2.5 cifXGetDeviceCount()
	4.2.6 cifXFindDevice()
	4.2.7 cifXDeleteDevice()

	4.3 Support for non-PCI devices
	4.3.1 ISA or other memory-mapped devices (DPM)
	4.3.2 Custom-specific hardware interface
	4.3.2.1 Hardware initialization via hwif_init
	4.3.2.2 Hardware de-initialization via hwif_deinit
	4.3.2.3 Hardware read access via hwif_read
	4.3.2.4 Hardware write access via hwif_write

	4.3.3 The plugin interface of the driver
	4.3.3.1 cifx_device_count()
	4.3.3.2 cifx_alloc_device()
	4.3.3.3 cifx_free_device()

	4.4 Startup procedure of driver/library
	4.4.1 Startup via AUTOSCAN or CARD number
	4.4.2 Startup via CIFX_DRIVER_INIT_NOSCAN

	4.5 Device configuration (device.conf)
	4.6 netX-based virtual Ethernet interface
	4.6.1 Features
	4.6.2 Requirements
	4.6.3 Limitations
	4.6.4 Overview
	4.6.5 Virtual cifX Ethernet interface setup

	5 Using SYCON.net to configure the fieldbus system
	5.1 Remote access via TCP/IP-Server

	6 Programming with the cifX Linux Driver
	6.1 Example: Generic driver initialization
	6.2 Example: Driver initialization for ISA device
	6.2.1 Not using UIO driver
	6.2.2 Using UIO driver
	6.2.3 Using the Device Tree

	6.3 Example: Driver initialization for custom hardware interface
	6.3.1 Using the hardware read/write abstraction
	6.3.2 Using the SPI plugin (Linux spidev framework)

	7 Question and answers
	7.1 cifX Device Driver
	7.1.1 Failed to install driver via build script
	7.1.2 It is not possible to run any script located on the CD
	7.1.3 Failed to load the uio_netx kernel module
	7.1.4 Unable to access or find a device
	7.1.5 Failed to map the DPM of a device
	7.1.6 cifX device is not correctly configured
	7.1.7 No log file of the user space driver is created
	7.1.8 Failed request DMA state or to exchange IO-data via DMA

	7.2 netX-based virtual Ethernet interface
	7.2.1 Failed to create a virtual Ethernet interface
	7.2.2 No cifX Ethernet device appears
	7.2.3 No network access although device successfully created
	7.2.4 Network adapter disappears during device reset

	8 Appendix
	8.1 List of tables
	8.2 List of figures
	8.3 Legal Notes
	8.4 Contacts

